

313-CD-610-003

EOSDIS Core System Project

Release 6B ECS Internal
Interface Control Document

for the ECS Project

March 2003

Raytheon Company
Upper Marlboro, Maryland

 313-CD-610-003

This page intentionally left blank.

 313-CD-610-003

Release 6B ECS Internal
Interface Control Document

for the ECS Project

March 2003

Prepared Under Contract NAS5-60000
CDRL Item #051

RESPONSIBLE ENGINEER

Alton Davis /s/ 3/19/03
Alton Davis, Systems Engineer Date
EOSDIS Core System Project

SUBMITTED BY

Arthur Cohen /s/ 3/19/03
Arthur Cohen, Director of Development Date
EOSDIS Core System Project

Raytheon Company
Upper Marlboro, Maryland

 313-CD-610-003

This page intentionally left blank.

 iii 313-CD-610-003

Preface

This document is the final version of a formal contract deliverable with an approval code 3. As
such it is reviewed and controlled by the contractor. Contractor approved changes to this
document are handled in accordance with change control requirements described in the ECS
Configuration Management Plan. Changes to this document are made by Document Change
Notice (DCN) or by complete revision. This document has been reviewed by the ECS
Development Facility/Science Development configuration control board and supports the “as
built” Release 6B System. Any questions or proposed changes should be addressed to:

Data Management Office
The ECS Project Office
Raytheon Systems Company
1616 McCormick Drive
Upper Marlboro, MD 20774-5301

 iv 313-CD-610-003

This page intentionally left blank.

 v 313-CD-610-003

Abstract

This document provides a set of interface scenarios that describe how the Release 6B ECS
interacts to execute end-to-end system threads. A domain (or end user) view and a component
interaction view are presented for each scenario. This document is intended for application
software engineers, systems engineers and system maintenance engineers to understand how
CSMS/SDPS components interact to perform key system functions. For detailed internal
interface information, on-line output provided by automatic software tools such as Discover and
ABC++ should be used.

The scenarios in this document reflect the capabilities and functions of the “as built” design for
Drop 6B.

Keywords: external interface, internal interface, public class, private class, class category,
system-level scenario, scenario primitive, interface class, CCS Middleware

 vi 313-CD-610-003

This page intentionally left blank.

 vii 313-CD-610-003

Change Information Page

List of Effective Pages

Page Number Issue

Title Submitted as Final
iii through xx Submitted as Final
1-1 and 1-2 Submitted as Final
2-1 and 2-2 Submitted as Final

3-1 through 3-512 Submitted as Final
AB-1 through AB-16 Submitted as Final

Document History

Document Number Status/Issue Publication Date CCR Number

313-CD-610-001 Submitted as Draft August 2000
313-CD-610-002 Submitted as Final August 2002 02-0668
313-CD-610-003 Submitted as Final March 2003 03-0114

 viii 313-CD-610-003

This page intentionally left blank.

 ix 313-CD-610-003

Contents

Preface

Abstract

Change Information Page

1. Introduction

1.1 Identification .. 1-1

1.2 Scope.. 1-1

1.3 Document Organization .. 1-2

2. Related Documentation

2.1 Parent Documents .. 2-1

2.2 Applicable Documents... 2-1

2.3 Information Documents Not Referenced ... 2-1

3. Interface Scenarios

3.1 Overview ... 3-1

3.2 Scenario Approach .. 3-4

3.2.1 Scenario Presentation Approach ... 3-5
3.2.2 Scenario Process Flow .. 3-7
3.2.3 Error Handling and Processing .. 3-8
3.2.4 TOOLKIT Error/Status Reporting (SMF Tools) .. 3-18
3.2.5. Memory Management... 3-23

3.3 ESDT Handling Scenario ... 3-62

3.3.1 Scenario Description .. 3-62

 x 313-CD-610-003

3.3.2 Scenario Preconditions ... 3-62
3.3.3 Scenario Partitions ... 3-62
3.3.4 Install ESDT Thread .. 3-62
3.3.5 Update ESDT Thread ... 3-66
3.3.6 (Deleted) .. 3-70
3.3.7 (Deleted) .. 3-70
3.3.8 Import ESDTs Thread .. 3-71
3.3.9 Export ESDT Thread ... 3-73

3.4 System Start-up/Shutdown ... 3-78

3.5 MODIS Scenario .. 3-79

3.5.1 MODIS Scenario Description .. 3-79
3.5.2 MODIS Scenario Preconditions ... 3-80
3.5.3 MODIS Scenario Partitions ... 3-81
3.5.4 MODIS Standing Order Submittal Thread .. 3-82
3.5.5 MODIS Standing Order Support Thread ... 3-84
3.5.6 MODIS Standard Production Thread ... 3-91
3.5.7 MODIS Failed PGE Handling Thread .. 3-131
3.5.8 MODIS Data Access Thread .. 3-138
3.5.9 Data Compression on Distribution Thread (Deleted) 3-149
3.5.10 Reactivation/Replan .. 3-149

3.6 Landsat-7 Scenario... 3-158

3.6.1 Landsat-7 Scenario Description... 3-158
3.6.2 Landsat-7 Scenario Preconditions.. 3-159
3.6.3 Landsat-7 Scenario Partitions .. 3-160
3.6.4 Landsat-7 User Registration Thread .. 3-160
3.6.5 Landsat-7 LAMS Data Insertion Thread ... 3-169
3.6.6 Landsat-7 IGS Tape Insertion Thread ... 3-179
3.6.7 Landsat-7 IAS Data Insertion Thread .. 3-186
3.6.8 Landsat-7 Search and Browse Thread ... 3-192
3.6.9 Landsat-7 Ordering WRS Scenes Thread .. 3-202
3.6.10 Landsat-7 MOC Interface Thread - Deleted .. 3-224
3.6.11 Landsat-7 Ordering L70R Floating Scenes Thread ... 3-224
3.6.12 L-7 Floating Scene Price Estimation Thread ... 3-246
3.6.13 Landsat-7 Error Handling .. 3-250

 xi 313-CD-610-003

3.7 ASTER Scenario.. 3-252

3.7.1 ASTER Scenario Description .. 3-252
3.7.2 ASTER Scenario Preconditions... 3-253
3.7.3 ASTER Scenario Partitions.. 3-254
3.7.4 ASTER DAR Submission Thread ... 3-255
3.7.5 ASTER GDS Tape Insertion Thread ... 3-259
3.7.6 ASTER Backward Chaining Thread.. 3-264
3.7.7 ASTER QA Metadata Update Thread ... 3-290
3.7.8 ASTER On-Demand High Level Production Thread 3-294
3.7.9 ASTER On-Demand Non-Standard L1B Production Thread.......................... 3-312
3.7.10 ASTER On-Demand DEM Production Thread ... 3-318
3.7.11 ASTER Simplified Expedited Data Support Thread 3-324
3.7.12 ASTER Routine Processing Planning Data Start/Stop Time Thread 3-333
3.7.13 ASTER Routine Processing Planning Insertion Time Thread......................... 3-338
3.7.14 ASTER Spatial Query Thread ... 3-342
3.7.15 ASTER View ECS Data Holdings Thread .. 3-346
3.7.16 ASTER Price & Order Data Thread .. 3-356
3.7.17 User View And Order ASTER GDS Data Thread... 3-364
3.7.18 ASTER Attached DPRs (Standing Orders) Thread ... 3-372

3.8 Planning Scenario ... 3-379

3.8.1 Planning Scenario Description .. 3-379
3.8.2 Planning Scenario Preconditions .. 3-379
3.8.3 Planning Scenario Partitions ... 3-379
3.8.4 Ground Events Jobs Thread (Thread A) ... 3-380
3.8.5 Resource Planning Thread (Thread B) ... 3-383
3.8.6 Science Software Archive Package Thread - SSAP Insertion (Thread A) 3-387
3.8.7 SSAP Update Thread (Thread B) ... 3-392
3.8.8 Archive PGE Executable TAR File Thread (Thread C) 3-396
3.8.9 Metadata Query for Current Dynamic Input Granules (Thread A) 3-399
3.8.10 Dynamic Granule Available in the Future Thread (Thread B) 3-401
3.8.11 Metadata Based Activation Thread ... 3-403
3.8.12a DPR Regeneration Thread ... 3-406
3.8.12b Reprocessing Thread .. 3-410
3.8.13 Delete DPR Thread ... 3-415
3.8.14 Closest Granule Thread ... 3-418

 xii 313-CD-610-003

3.9 EDOS/FDD Interfaces Scenario ... 3-422

3.9.1 EDOS/FDD Interfaces Scenario Description .. 3-422
3.9.2 EDOS/FDD/EMOS Interfaces Scenario Preconditions 3-422
3.9.3 EDOS/FDD Interfaces Scenario Partitions ... 3-423
3.9.4 EDOS Level 0 Ancillary Data Thread .. 3-424
3.9.5 Definitive Attitude Data Thread ... 3-430
3.9.6 FDD Repaired Ephemeris Data Thread .. 3-435
3.9.7 EDOS Backup Level 0 Data Insertion Thread –Descoped.............................. 3-442
3.9.8 Aqua FDS Ephemeris Data Thread ... 3-442
3.9.9 Aqua Predictive/Definitive Attitude Data Thread .. 3-447
3.9.10 Aura FDS Ephemeris Data Thread .. 3-453
3.9.11 Aura Definitive Attitude Data Thread ... 3-458

3.10 Cross Mode / DAAC Scenario .. 3-465

3.10.1 Cross Mode / DAAC Scenario Description .. 3-465
3.10.2 Cross Mode / DAAC Scenario Preconditions ... 3-465
3.10.3 Cross Mode / DAAC Scenario Partitions ... 3-465
3.10.4 Cross Mode / DAAC Insertion Thread ... 3-465

3.11 Science Investigator-Led Processing Systems (SIPS) Scenario 3-472

3.11.1 SIPS Scenario Description .. 3-472
3.11.2 SIPS Scenario Preconditions ... 3-472
3.11.3 SIPS Scenario Partitions ... 3-472
3.11.4 SIPS Data Insertion Thread .. 3-472
3.11.5 Inventory Search – SIPS Data Reprocessing (Thread B) 3-477
3.11.6 Product Order – SIPS Data reprocessing (Thread C) 3-481
3.11.7 Integrated Search and Order – SIPS Data reprocessing (Thread D) 3-487

3.12 Fault Recovery .. 3-494

3.12.1 Request Identification and Checkpointing... 3-496
3.12.2 Start Temperatures and Restart Notification.. 3-497
3.12.3 Client/Server Relationships ... 3-497
3.12.4 Fault Handling ... 3-499
3.12.5 Client Crash ... 3-502
3.12.6 Client Restart ... 3-503
3.12.7 Server Crash... 3-506

 xiii 313-CD-610-003

3.12.8 Server Restart... 3-506
3.12.9 Request Re-submission.. 3-510

List of Figures

3.2.2-1. Scenario Process Flow... 3-7

3.3.4.1-1. Install ESDT Interaction Diagram... 3-63

3.3.5.1-1. Update ESDT Interaction Diagram ... 3-67

3.3.8.1-1. Import ESDT Interaction Diagram.. 3-71

3.3.9.1-1. Export ESDT Interaction Diagram.. 3-74

3.5.1-1. MODIS Scenario PGE/Data Relationship Diagram... 3-79

3.5.4.1-1. MODIS Standing Order Submittal Interaction Diagram... 3-82

3.5.5.1-1. MODIS Standing Order Support Interaction Diagram.. 3-85

3.5.6.1-1. MODIS Standard Production Interaction Diagram ... 3-92

3.5.7.1-1. MODIS Failed PGE Handling Interaction Diagram... 3-132

3.5.8.1-1. MODIS Data Access Interaction Diagram ... 3-139

3.5.10.4.1-1. DPR in New Plan but Not in Old Plan Interaction Diagram - Domain View ... 3-150

3.5.10.5.1-1. DPR in Old Plan but Not in New Plan Interaction Diagram - Domain View ... 3-152

3.5.10.6.1-1. DPR in Both Old Plan and New Plan Interaction Diagram - Domain View..... 3-155

3.6.4.1-1. L-7 User Registration Interaction Diagram.. 3-161

3.6.5.1-1. L-7 LPS Data Insertion Interaction Diagram ... 3-169

3.6.6.1-1. Landsat-7 IGS Tape Insertion Interaction Diagram ... 3-179

3.6.7.1-1. Landsat-7 IAS Data Insertion Interaction Diagram.. 3-187

3.6.8.1-1. L-7 Search and Browse Interaction Diagram ... 3-193

3.6.9.1-1. L-7 Ordering WRS Scenes Interaction Diagram.. 3-203

3.6.11.1-1. L-7 Ordering L70R Floating Scenes Interaction Diagram 3-224

3.6.12.1-1. L-7 Floating Scenes Price Estimation Interaction Diagram 3-246

3.6.13.1-1. L-7 Error Handling Interaction Diagram.. 3-250

3.7.1-1. ASTER Scenario PGE/Data Relationships Diagram... 3-253

3.7.4.1-1. ASTER DAR Submission Interaction Diagram ... 3-256

 xiv 313-CD-610-003

3.7.5.1-1. ASTER GDS Tape Insertion Interaction Diagram... 3-259

3.7.6.1-1. ASTER Backward Chaining Interaction Diagram ... 3-264

3.7.7.1-1. ASTER QA Metadata Update Interaction Diagram... 3-291

3.7.8.1-1. ASTER On-Demand High Level Production Interaction Diagram........................ 3-295

3.7.9.1-1. ASTER On-Demand Non-Standard L1B Interaction Diagram.............................. 3-313

3.7.10.1-1. ASTER On-Demand DEM Interaction Diagram.. 3-319

3.7.11.1-1. ASTER Simplified Expedited Data Support Interaction Diagram....................... 3-324

3.7.12.1-1. ASTER Routine Processing Planning Data Start/Stop Time Interaction
Diagram.. 3-334

3.7.13.1-1. Routine Processing Planning Insertion Time Thread Interaction Diagram.......... 3-339

3.7.14.1-1. ASTER Spatial Query Interaction Diagram ... 3-343

3.7.15.1-1. ASTER View ECS Data Holdings Interaction Diagram...................................... 3-347

3.7.16.1-1. ASTER Price & Order Data Interaction Diagram... 3-356

3.7.17.1-1. User View And Order ASTER GDS Data Interaction Diagram 3-365

3.7.18.1-1. ASTER Attached DPRs (Standing Orders) Interaction Diagram......................... 3-373

3.8.4.1-1. Ground Events Jobs Thread Interaction Diagram - Domain View 3-381

3.8.5.1-1. Resource Planning Interaction Diagram - Domain View....................................... 3-384

3.8.6.1-1. SSAP Diagram - Domain View.. 3-388

3.8.7.1-1. SSAP Update Interaction Diagram - Domain View... 3-392

3.8.8.1-1. Archive PGE Executable TAR File Interaction Diagram - Domain View............. 3-396

3.8.9.1-1. Metadata Query for Current Dynamic Granule Interaction Diagram -
Domain View... 3-399

3.8.10.1-1. Future Dynamic Granule Interaction - Domain View.. 3-401

3.8.11.1-1. Metadata Based Activation Interaction Diagram - Domain View 3-404

3.8.12a.1-1. DPR Regeneration Interaction Diagram - Domain View 3-407

3.8.12b.1-1. Reprocessing Interaction Diagram - Domain View ... 3-411

3.8.13.1-1. Delete DPR Interaction Diagram - Domain View.. 3-415

 xv 313-CD-610-003

3.8.14.1-1. Closest Granule Interaction Diagram – Domain View... 3-418

3.9.4.1-1. EDOS Level 0 Ancillary Data Interaction - Domain View.................................... 3-425

3.9.5.1-1. Definitive Attitude Data Diagram .. 3-430

3.9.6.1-1. FDD Repaired Ephemeris Data Diagram ... 3-436

3.9.8.1-1. Aqua FDS Ephemeris Processing Data Interaction - Domain View...................... 3-443

3.9.9.1-1. Definitive Attitude Data Diagram .. 3-448

3.9.10.1-1. Aura FDS Ephemeris Processing Data Interaction – Domain View 3-454

3.9.11.1-1. Aura Definitive Attitude Data Diagram ... 3-459

3.10.4.1-1. Cross Mode / DAAC Insertion Interaction Diagram.. 3-466

3.11.4.1-1. SIPS Data Insertion Interaction Diagram ... 3-473

3.11.5.1-1. Inventory Search Diagram – Domain View .. 3-478

3.11.6.1-1. Product Order Diagram – Domain View... 3-482

3.11.7.1-1. Integrated Search and Order Diagram – Domain View .. 3-488

List of Tables

3.1-1. ECS Subsystem and Component Design Overviews ... 3-2

3.2.5-1. Memory Management Improvements .. 3-26

3.3.4.2-1. Interaction Table - Domain View: ESDT Installation... 3-64

3.3.4.3-1. Component Interaction Table: ESDT Installation ... 3-64

3.3.5.2-1. Interaction Table - Domain View: ESDT Update ... 3-67

3.3.5.3-1. Component Interaction Table: ESDT Update ... 3-69

3.3.8.2-1. Interaction Table - Domain View: ESDT Import .. 3-72

3.3.8.3-1. Component Interaction Table: ESDT Installation ... 3-73

3.3.9.2-1. Interaction Table - Domain View: ESDT Export .. 3-75

3.3.9.3-1. Component Interaction Table: ESDT Export .. 3-76

3.5.4.2-1. Interaction Table - Domain View: MODIS Standing Order Submittal.................. 3-83

3.5.4.3-1. Component Interaction Table: MODIS Standing Order Submittal 3-83

3.5.5.2-1. Interaction Table - Domain View: MODIS Standing Order Support...................... 3-86

 xvi 313-CD-610-003

3.5.5.3-1. Component Interaction Table: MODIS Standing Order Support............................ 3-87

3.5.6.2-1. Interaction Table - Domain View: MODIS Standard Production 3-92

3.5.6.3-1. Component Interaction Table: MODIS Standard Production 3-98

3.5.7.2-1. Interaction Table - Domain View: MODIS Failed PGE Handling 3-133

3.5.7.3-1. Component Interaction Table: MODIS Failed PGE Handling............................... 3-134

3.5.8.2-1. Interaction Table - Domain View: MODIS Data Access 3-140

3.5.8.3-1. Component Interaction Table: MODIS Data Access ... 3-142

3.5.10.4.2-1. Interaction Table - Domain View: DPR in New Plan but Not in Old Plan....... 3-151

3.5.10.4.3-1. Component Interaction Table: DPR in New Plan but Not in Old Plan 3-151

3.5.10.5.2-1. Interaction Table - Domain View: DPR in Old Plan but Not in New Plan....... 3-153

3.5.10.5.3-1. Component Interaction Table: DPR in Old Plan but Not in New Plan 3-154

3.5.10.6.2-1. Interaction Table - Domain View: DPR in Both Old Plan and New Plan......... 3-156

3.5.10.6.3-1. Component Interaction Table: DPR in Both Old Plan and New Plan 3-157

3.6.4.2-1. Interaction Table - Domain View: L7 User Registration 3-162

3.6.4.3-1. Component Interaction Table: L7 User Registration ... 3-164

3.6.5.2-1. Interaction Table - Domain View: L-7 LPS Data Insertion 3-170

3.6.5.3-1. Component Interaction Table: L-7 LPS Data Insertion.. 3-173

3.6.6.2-1. Interaction Table - Domain View: Landsat-7 IGS Tape Insertion 3-180

3.6.6.3-1. Component Interaction Table: Landsat-7 IGS Tape Insertion 3-181

3.6.7.2-1. Interaction Table - Domain View: L-7 IAS Data Insertion.................................... 3-188

3.6.7.3-1. Component Interaction Table: L-7 IAS Data Insertion .. 3-189

3.6.8.2-1. Interaction Table - Domain View: L-7 Search and Browse 3-194

3.6.8.3-1. Component Interaction Table: L-7 Search and Browse ... 3-195

3.6.9.2-1. Interaction Table - Domain View: L-7 Ordering WRS Scenes.............................. 3-204

3.6.9.3-1. Component Interaction Table: L-7 Ordering WRS Scenes 3-209

 xvii 313-CD-610-003

3.6.11.2-1. Interaction Table - Domain View: L-7 Ordering L70R Floating Scenes 3-225

3.6.11.3-1. Component Interaction Table: L-7 Ordering L70R Floating Scenes 3-230

3.6.12.2-1. Interaction Table - Domain View: L-7 Floating Scenes Price Estimation 3-247

3.6.12.3-1. Component Interaction Table: L-7 Floating Scene Price Estimate 3-248

3.6.13.2-1. Interaction Table - Domain View: L-7 Error Handling.. 3-250

3.6.13.3-1. Component Interaction Table: L-7 Error Handling.. 3-251

3.7.4.2-1. Interaction Table - Domain View: ASTER DAR Submission 3-256

3.7.4.3-1. Component Interaction Table: ASTER DAR Submission 3-258

3.7.5.2-1. Interaction Table - Domain View: ASTER GDS Tape Insertion........................... 3-260

3.7.5.3-1. Component Interaction Table: ASTER GDS Tape Insertion 3-261

3.7.6.2-1. Interaction Table - Domain View: ASTER Backward Chaining 3-265

3.7.6.3-1. Component Interaction Table: ASTER Backward Chaining 3-268

3.7.7.2-1. Interaction Table - Domain View: ASTER QA Metadata Update......................... 3-291

3.7.7.3-1. Component Interaction Table: ASTER QA Metadata Update 3-292

3.7.8.2-1. Interaction Table - Domain View: ASTER On-Demand High Level Production.. 3-296

3.7.8.3-1. Component Interaction Table: ASTER On-Demand High Level Production........ 3-300

3.7.9.2-1. Interaction Table - Domain View: ASTER On-Demand Non-Standard L1B
Production.. 3-314

3.7.9.3-1. Component Interaction Table: ASTER On-Demand Non-Standard L1B
Production.. 3-316

3.7.10.2-1. Interaction Table - Domain View: ASTER On-Demand DEM Production 3-320

3.7.11.2-1. Interaction Table - Domain View: ASTER Simplified Expedited Data 3-325

3.7.11.3-1. Component Interaction Table: ASTER Simplified Expedited Data..................... 3-327

3.7.12.2-1. Interaction Table - Domain View: ASTER Routine Processing Planning Data
Start/Stop Time .. 3-335

3.7.12.3-1. Component Interaction Table: ASTER Routine Processing Planning Data Start/Stop
Time ... 3-337

3.7.13.2-1. Interaction Table - Domain View: ASTER Routine Processing Planning Insertion
Time ... 3-340

 xviii 313-CD-610-003

3.7.13.3-1. Component Interaction Table: ASTER Routine Processing Planning Insertion
Time ... 3-341

3.7.14.2-1. Interaction Table - Domain View: ASTER Spatial Query 3-344

3.7.14.3-1. Component Interaction Table: ASTER Spatial Query ... 3-345

3.7.15.2-1. Interaction Table - Domain View: ASTER View ECS Data Holdings................ 3-348

3.7.15.3-1. Component Interaction Table: ASTER View ECS Data Holdings 3-350

3.7.16.2-1. Interaction Table - Domain View: ASTER Price & Order Data.......................... 3-357

3.7.16.3-1. Component Interaction Table: ASTER Price & Order Data Thread.................... 3-359

3.7.17.2-1. Interaction Table - Domain View: User View And Order ASTER GDS Data 3-366

3.7.17.3-1. Component Interaction Table: User View And Order ASTER GDS Data 3-369

3.7.18.2-1. Interaction Table - Domain View: ASTER Attached DPRs (Standing Orders)... 3-374

3.7.18.3-1. Component Interaction Table: ASTER Attached DPRs(Standing Orders).......... 3-376

3.8.4.2-1. Interaction Table - Domain View: Ground Events Jobs... 3-382

3.8.4.3-1. Component Interaction Table: Ground Events Jobs... 3-382

3.8.5.2-1. Interaction Table - Domain View: Resource Planning... 3-384

3.8.5.3-1. Component Interaction Table: Resource Planning... 3-385

3.8.6.2-1. Interaction Table - Domain View: SSAP Insertion .. 3-389

3.8.6.3-1. Component Interaction Table: SSAP Insertion .. 3-390

3.8.7.2-1. Interaction Table - Domain View: SSAP Update... 3-393

3.8.7.3-1. Component Interaction Table: SSAP Update... 3-394

3.8.8.2-1. Interaction Table - Domain View: Archive PGE Executable Tar File................... 3-397

3.8.8.3-1. Component Interaction Table: Archive PGE Executable Tar File 3-398

3.8.9.2-1. Interaction Table - Domain View: Current Dynamic Granule 3-400

3.8.9.3-1. Component Interaction Table: Current Dynamic Granule 3-401

3.8.10.2-1. Interaction Table - Domain View: Dynamic Granule Available in the Future ... 3-402

3.8.10.3-1. Component Interaction Table: Dynamic Granule Available in the Future 3-403

3.8.11.2-1. Interaction Table - Domain View: Metadata Based Activation 3-405

3.8.11.3-1. Component Interaction Table: Metadata Based Activation 3-405

3.8.12a.2-1. Interaction Table - Domain View: DPR Regeneration....................................... 3-407

 xix 313-CD-610-003

3.8.12a.3-1. Component Interaction Table: DPR Regeneration ... 3-409

3.8.12b.2-1. Interaction Table - Domain View: Reprocessing ... 3-412

3.8.12b.3-1. Component Interaction Table: Reprocessing ... 3-413

3.8.13.2-1. Interaction Table - Domain View: Delete DPR.. 3-416

3.8.13.3-1. Component Interaction Table: Delete DPR.. 3-417

3.8.14.2-1. Interaction Table - Domain View: Closest Granule ... 3-419

3.8.14.3-1. Component Interaction Table: Closest Granule ... 3-420

3.9.4.2-1. Interaction Table - Domain View: EDOS L0 Ancillary Data 3-425

3.9.4.3-1. Component Interaction Table: EDOS L0 Ancillary Data 3-427

3.9.5.2-1. Interaction Table - Domain View: Definitive Attitude Data.................................. 3-431

3.9.5.3-1. Component Interaction Table: Definitive Attitude Data .. 3-432

3.9.6.2-1. Interaction Table - Domain View: FDD Repaired Ephemeris Data....................... 3-437

3.9.6.3-1. Component Interaction Table: FDD Repaired Ephemeris Data............................. 3-439

3.9.8.2-1. Interaction Table - Domain View: FDS Ephemeris Data..................................... 3-444

3.9.8.3-1. Component Interaction Table: Aqua Ephemeris Processing.................................. 3-445

3.9.9.2-1. Interaction Table - Domain View: Aqua Predicitve/Definitive Attitude Data....... 3-448

3.9.9.3-1. Component Interaction Table: Aqua Predictive/Definitive Attitude Data 3-450

3.9.10.2-1. Interaction Table - Domain View: FDS Ephemeris Data 3-454

3.9.10.3-1. Component Interaction Table - Aura Ephemeris Processing 3-456

3.9.11.2-1. Interaction Table - Domain View: Aura Definitive Attitude Data....................... 3-460

3.9.11.3-1. Component Interaction Table: Aura Definitive Attitude Data 3-462

3.10.4.2-1. Interaction Table - Domain View: Cross Mode / DAAC Insertion...................... 3-466

3.10.4.3-1. Component Interaction Table: Cross Mode / DAAC Insertion............................ 3-468

3.11.4.2-1. Interaction Table - Domain View: SIPS Data Insertion 3-473

3.11.4.3-1. Component Interaction Table: SIPS Data Insertion ... 3-475

3.11.5.2-1. Interaction Table - Domain View: Inventory Search ... 3-478

3.11.5.3-1. Component Interaction Table: Inventory Search.. 3-480

3.11.6.2-1. Interaction Table - Domain View: Product Order .. 3-482

3.11.6.3-1. Component Interaction Table: Product Order .. 3-485

 xx 313-CD-610-003

3.11.7.2-1. Interaction Table - Domain View: Integrated Search and Order.......................... 3-489

3.11.7.3-1. Component Interaction Table: Integrated Search and Order................................ 3-491

3.12-1. Fault Recovery CIs ... 3-495

3.12-2. Checkpointed Servers ... 3-496

3.12-3. Fault Recovery Client/Server Interfaces... 3-498

3.12-4. Fault Handling Policies .. 3-500

3.12-5. Server Responses to Client Failures ... 3-502

3.12-6. Client Restart Notification Exceptions ... 3-504

3.12-7. Server Responses to Client Notification... 3-506

3.12-8. Server Response versus Restart Temperature .. 3-508

3.12-9. Server Response for Request Re-submission ... 3-511

Abbreviations and Acronyms

 1-1 313-CD-610-003

1. Introduction

1.1 Identification
This Release 6B ECS Internal Interface Control Document (ICD) for the ECS Project, Contract
Data Requirement List (CDRL) item 051, with requirements specified in Data Item Description
(DID) 313/DV3, is a required deliverable in its final form under the Earth Observing System
(EOS) Data and Information System (EOSDIS) Core System (ECS), Contract (NAS5-60000),
Revision C, October, 1999 (423-41-03).

1.2 Scope
The Release 6B Internal ICD specifies software interfaces internal to the CSMS/SDPS software
architecture. It defines Release 6B services in the context of system level scenarios. The
relationships and interactions between the Release 6B CSCIs are presented. This document also
describes how ECS infrastructure services are used by the ECS internal applications.

This document addresses all interface classes from SDPS and CSMS CSCIs, which are linked to
create a desired scenario. External interfaces are mapped to the internal ECS object(s) that
provide the service.

This document is not intended to include hardware interface information between subsystems or
hardware descriptions. Subsystem hardware is described in the DID 305 document identified in
sub-section 2.2. Any reference to hardware processes in this document is meant to portray
functional activity relative to software processes and not specific hardware functions.

This document describes the ECS system in terms of its support of several primary scenarios.
These scenarios, based on the normal support of EOS instruments, are listed below and are
described in Section 3:

• ESDTs (Earth Science Data Types)
• System Startup/Shutdown
• MODIS (an instrument on the Terra spacecraft which provides data to three DAACs)
• Landsat-7
• ASTER (an instrument on the Terra spacecraft which provides data to Japan (GDS)).
• Planning Scenarios
• EDOS/ FDD/EMOS Interfaces
• Cross Mode/DAAC Scenario
• Science Investigator-Led Processing Systems (SIPS) Scenario
• Fault Recovery

 1-2 313-CD-610-003

1.3 Document Organization
The document is organized to describe the Release 6B internal interfaces.

Section 1 provides information regarding the identification, scope, status, and organization of
this document.

Section 2 provides a listing of the related documents, which were used as source information for
this document.

Section 3 contains the system level scenarios illustrating the interactions between the ECS
CSCIs/CSCs. This section also provides an overview of the interface modeling approach to
document the internal interfaces.

 2-1 313-CD-610-003

2. Related Documentation

2.1 Parent Documents
194-207-SEI System Design Specification for the ECS Project

313/DV3 ECS Internal Interface Control Documents

2.2 Applicable Documents
305-CD-610 Release 6B Segment/Design Specification for the ECS Project

311-CD-606 Subscription Server Database Design and Schema Specifications for
the ECS Project

611-CD-610 Mission Operation Procedures – Drop 6B

625-CD-604 ECS Project Training Manual, Volume 4: System Administration

505-41-32 ESDIS Document, Interface Control Document between the EOSDIS
Core System (ECS) and the Landsat-7 System

2.3 Information Documents Not Referenced
The documents listed below, while not directly applicable, do help in the maintenance of the
delivered software.

423-41-02 Goddard Space Flight Center, Functional and Performance
Requirements Specification for the Earth Observing System Data and
Information System Core System

423-41-57 ICD between ECS and the Science Investigator - Lead Processing
Systems (SIPS)

423-41-63 ICD between EMOS and SDPS

505-41-40 ICD between ECS and GSFC DAAC

540-022 Goddard Space Flight Center, Earth Observing System
Communications System Design Specification Interface Requirements
Document

560-EDOS-0211.0001 Goddard Space Flight Center, Interface Requirements Document
Between EDOS and the EOS Ground System Operational Agreement
between the Landsat 7 Data Handling Facility and the Distributed
Active Archive Center (DAAC) at the EROS Data Center (EDC)

 2-2 313-CD-610-003

This page intentionally left blank.

 3-1 313-CD-610-003

3. Interface Scenarios

3.1 Overview
The purpose of this section is to document how ECS works to fulfill its mission. The ECS
mission is, in its essence, to manage Earth Science-related data in the following ways:

• To receive data from external sources,

• To save that data in either long-term or permanent storage,

• To produce higher level data products from the received data, and

• To support access to the data by Earth Scientists as well as other registered clients

ECS is a complex software system that comprises nine subsystems. Each subsystem comprises a
set of software programs (COTS and custom built) working together to exchange information
and control the management of Earth Science-related data.

A preferred method to document how a complex system such as ECS works is to follow a
specific thread of functionality, or scenario, tracing how the ECS Clients (both human and
software) and internal ECS components interact in support of the scenario. The interaction
between the ECS components can be understood by focusing on how the interfaces offered by
the ECS components are used in support of the system functionality required to support the given
scenario.

This section documents one facet of a multi-faceted problem. To get a more complete view of
precisely how each ECS component performs its role, the reader should also reference the design
material presented by each of the ECS components. This material can be found in DID 3051.
Table 3.1-1 maps the subsystems and their components to their appropriate interface process.
Only major interface processes utilized in the scenarios are shown in this table. Indeed, this
document and CDRL 305 should be used in conjunction with each other. CDRL 305 provides a
general description of the processes and a statement of what the components are providing and
how they provide it. This section documents how those components work together in specific
applications to provide a complete system.

It should be noted that many of the scenarios involve a software component/operations interface
with a human operator. The intent of the descriptions of these interfaces is to show the
involvement of a human operator to the extent necessary to affect the correct component function
and not to show operator procedures. These procedures are detailed in the 611 document
specified in sub-section 2.2.

1 The DID 305 refers to ECS Document: 305-CD-610-003, Release 6B Segment/Design Specification for the ECS

Project.

 3-2 313-CD-610-003

Table 3.1-1. ECS Subsystem and Component Design Overviews (1 of 3)
Subsystem (CI) CSCI/Component Major Interface Process
CLS EOS Data Gateway (EDG) Netscape
 User Profile Gateway EcClDtUserProfileGateway
 Java DAR Tool EcClWbJdt
 EOSView EOSView
 Java Earth Science Server process JESS
 User Log in EcClOdUserLogin
 On-Demand Form Request Manager EcClOdProductRequest
CSS Subscription Server EcSbSubServer
 Subscription Server GUI EcSbGui
 Ftp Server ftp_popen
 Configuration Registry Server (CRS) EcCsRegistry
 ASTER DAR Communications

Gateway
EcGwDARServer

 ASTER E-mail Parser Gateway EcCsEmailParser
 MOJO Gateway EcCsMojoGateway
 Machine to Machine Gateway EcCsMtMGateway
 Sybase Adaptive Server Enterprise

(ASE - COTS for Subscription Server)
N/A

DMS V0 Gateway EcDmV0ToEcsGateway
 ASTER Gateway EcDmEcsToAsterGateway
 EcDmAsterToEcsGateway
 Maintenance Tool - Mtool EcDmDdMaintenanceTool
 Data Dictionary (DDICT) EcDmDictServer
 Sybase ASE (COTS for DDICT) N/A
 PDSIS Server pdsis.jar – start script

EcPdPDSISServerStart
DPS AutoSys (COTS) Event_daemon
 Job Management EcDpPrJobMgmt, EcDpPrJobMgmtClient
 DPR Execution EcDpPrEM, EcDpPrRunPGE
 DPREP EcDpPrAm1FddAttitudeDPREP_PGE

EcDpPrAm1EdosAncilliary
EcDpPrAm1EdosEphAHDPREP_PGE
EcDpPrAm1EdosEphemerisRepair
EcDpPrPM1AttitudeDPREP_PGE
EcDpPrPm1FddEpehemerisDPREP_PGE
EcDpPrAm1ToolkitToHdf
EcDpPrDumpAttitudeDPREP
EcDpPrDumpEphemerisDPREP
EcDpPrEMGetAncHeaders

 Ground Event EcDpPrGE
 QA Monitor EcDpPrQaMonitorGUI
 AITTL EcDpAtMgr, EcDpAtSSAPGui,

EcDpAtInsertExeTarFile
 Deletion EcDpPrDeletion

 3-3 313-CD-610-003

Table 3.1-1. ECS Subsystem and Component Design Overviews (2 of 3)
Subsystem

(CI)
CSCI/Component Major Interface Process

DSS Science Data Server EcDsScienceDataServer
(SDSRV) HDF EOS Server EcDsHdfEosServer
 Science Data Server Operator GUI EcDsSdSrvGui
 Granule Deletion Administration Tool EcDsGranuleDelete
 Sybase ASE/SQS (COTS for SDSRV) N/A
 PDSIS pdsis.jar – PDSIS SCLI cron job
DSS Data Distribution Server EcDsDistributionServer
(DDIST) Data Distribution Operator GUI EcDsDdistGui
 Sybase ASE (COTS for DDIST) N/A
 PDSIS pdsis.jar – PDSIS cron job polls DDIST

Database
DSS Archive EcDsStArchiveServer
(STMGT) Request Manager EcDsStRequestManagerServer
 Staging Disk EcDsStStagingDiskServer
 Cache Manager EcDsStCacheManagerServer
 Storage Management Operator GUI EcDsStmgtGui
 Ftp Server EcDsStFtpServer
 DTF Tape EcDsStDTFServer
 Pull Monitor EcDsStPullMonitorServer
 Sybase ASE (COTS for STMGT)

AMASS (COTS for STMGT)
N/A
N/A

INS Polling Ingest EcInPolling
 Ingest GUI EcInGUI
 Request Manager EcInReqMgr
 Granule Server EcInGran
 Ingest E-mail Gateway Server EcInEmailGWServer
 Sybase ASE (COTS for configuration

and state)
N/A

MSS User Registration Server
User Registration Server (SMC) GUI

EcMsAcRegUserSrvr
EcMsAcSMCRegUserGUI

 User Registration Server (Home
DAAC) GUI

EcMsAcDAACRegUserGUI

 Order Tracking Server EcMsAcOrderSrvr
 Order Tracking GUI EcMsAcOrderGUI
 Use Profile Database (Sybase ASE -

COTS)
N/A

 3-4 313-CD-610-003

Table 3.1-1. ECS Subsystem and Component Design Overviews (3 of 3)
Subsystem

(CI)
CSCI/Component Major Interface Process

PLS Subscription Editor EcPlSubsEdit
 Production Request Editor EcPlPREditor_IF
 Subscription Manager EcPlSubMgr
 Production Planning Workbench EcPlWb
 Resource Planning Workbench Editor EcPlRpRe
 Resource Planning Workbench

Reservation Editor
EcPlRpSi

 Resource Planning Workbench
Timeline

EcPlRpTl

 Workbench Timeline Tool EcPlTl
 Sybase ASE (COTS for PDPS

database)
N/A

 On-Demand Production Request Mgr. EcPlOdMgr
PDS V0 GTWAY EcDmV0ToEcsGateway
 SDSRV EcDsSCLI
 DDIST EcDsDistributionServer
 Oracle Server N/A
OM V0 GTWAY EcDmV0ToEcsGateway
 SDSRV EcDsScienceDataServer
 PDSIS pdsis.jar – start script

EcPdPDSISServerStart
 Sybase ASE N/A

3.2 Scenario Approach
Section 3.3 describes the steps required prior to the start of usage of the EOSDIS system. The
steps taken to install, update, import and export ESDTs are defined in this section.

Section 3.4 provides the document names, numbers and sections where the startup and shutdown
procedures and process are documented. [This scenario is now described in the Mission
Operations Procedures document, 611-CD-600, Section 3.2. Also, in the ECS Project Training
Material document, Volume 4: System Administration, 625-CD-504, in the section titled System
Startup and Shutdown, the process for start up and shutdown is described.]

Sections 3.5 - 3.7 document the ECS system in terms of its support of three primary scenarios
using the following primary EOS instruments. (Note other instruments use the same interfaces
and are not shown).

• MODIS

• Landsat-7

• ASTER

 3-5 313-CD-610-003

Section 3.8 describes the Production Planning scenario. This scenario applies to processing
common to MODIS and ASTER scenarios.

Section 3.9 describes the EDOS/FDD/EMOS Interfaces Scenario.

Section 3.10 describes threads utilized for cross Mode and cross DAAC data transfers.

Section 3.11 describes the support for SIPS

Section 3.12 outlines client and server failure recovery policies and processes.

Sub-sections describe how ECS supports each of these scenarios in the above sections from two
perspectives, the domain view and the component view. The domain view breaks the scenario
into a sequence of activities based upon what happens from the Operational or Science Data
perspective. This view presents how ECS-external users and systems interact with ECS as well
as looking at how the science data is managed within ECS. This view does not present the
details of specific process interactions. The component view shows a more detailed set of
interactions that describe the interface usage between ECS components. Each interaction
between components is documented, in terms of how and why. Each of the scenarios
documented here has been partitioned into primary threads of activity. Each thread of the
scenario is documented independently to simplify the scenarios.

3.2.1 Scenario Presentation Approach

This section describes how the ECS support of each scenario is presented. As mentioned above,
each Scenario is partitioned into a sequence of threads of activity. Each of those threads is
documented in the same manner. The following paragraphs define this documentation approach.

Scenario Description: First, each scenario is described from the science mission perspective.
The primary system functions being exercised are identified.

Scenario Preconditions: All activities that must have been performed prior to the execution of
the scenario are identified.

Scenario Partitions: The scenario threads are identified and described.

Scenario Thread Interaction Diagram: A diagram is presented for each Scenario Thread. This
diagram shows external system, ECS User, DAAC Operator and ECS-internal subsystem
interactions. The notation of the diagram allows for the interactions to be labeled with numbers
and short terms (events). The arrow numbering uses the convention of a letter, representing the
Thread within the Scenario, and a sequence number (e.g., A.1, A.2, B.2, B.3). The mechanism
of the interactions (e.g. CCS Middleware, HMI, ftp, and e-mail or as noted) is identified by the
interaction line presentation style. The arrow direction indicates process flow direction for the
event named. Note that request events show the direction of the request and the return
answering the request is assumed and not necessarily shown as a separate interface direction.

Interaction Table - Domain View: Each Scenario Thread is documented in a table, which
describes the interactions presented in the Scenario Thread Interaction Diagram. These
interactions are not the detailed definitions of how the interactions are fulfilled, but rather that
they need to occur. This table further specifies the interactions as each row represents an

 3-6 313-CD-610-003

interaction event. The columns in the table delimit how each interaction is defined. The
Interaction Table - Domain View includes the following columns:

Step: An identifier of the step within the Scenario Thread. Each step is identified with an
“x.y” label, where x is a letter referring to the Thread within the scenario, and y is a
sequence number.

Event: The name of an interaction occurrence between major parts of the system (i.e.,
Subsystem to Subsystem).

Interface Client: The Client of the interaction. This can be viewed as who is asking the
question, or who is stimulating the action. Included in this column are Users, Operators,
External Systems and usually ECS subsystems rather than components.

Interface Provider: All Interactions are described in terms of exercising well-defined
interfaces. Those interfaces are offered by some entity in the system and are similar to
those identified as Interface Clients. The Interface Provider is not only responsible for
offering the interface, but for ensuring that the interface is met. The provider is doing the
action required, perhaps collaborating with other system entities.

Data Issues: This column describes any special Data related issues. This description
includes the data types, volumes and frequencies, as well as the current source of the data
used in the system. The word “None” indicates there are no data issues.

Step Preconditions: Any special preconditions that must have been met for the interaction
to be successful are called out here. The word “None” indicates there are no special
preconditions for this particular step. It is assumed that all baseline subsystems (DSS,
INS, CLS, DMS, PLS, DPS, CSS and MSS) are up and running for each thread.

Description: A description is given of what generally occurs during the interaction, as
well as its application in this scenario step.

Component Interaction Table: Each Scenario Thread is further documented in the Component
Interaction Table. This table specifies each ECS component-level interaction that is required to
support the steps in the Scenario Thread.

Each of these interactions is numbered in a way consistent with the Scenario Thread it is
supporting. Specifically, each Component Interaction step is numbered with a “sub”step number
in a sequence within that Scenario Thread step. For example, if there are three component
interactions required fulfilling Scenario Thread step A.3, those three steps are numbered A.3.1,
A.3.2 and A.3.3. Please note that if no component interaction is required to fulfill a Scenario
Thread Step (i.e. - only human-to-human interaction), there are no component interaction steps.
Therefore, in the Component Interaction steps, a Scenario Thread Step might be skipped.

Each row in the Component Interaction Table defines a step in how the system supports the
capability. The columns in the Component Interaction Table are:

Step: An identifier, as described above, of the step within the Scenario Thread.

Event: The name of an interaction occurrence between components.

Interface Client: The Client of the interaction. This can be viewed as who is asking the
question, or who is stimulating the action. Included in this column are Users, Operators,

 3-7 313-CD-610-003

External Systems and ECS components. Where ECS components are the Interface
Clients, the specific component process is identified.

Interface Provider: This identifies the entity in the system providing the interface used to
perform some capability. Interface Providers are primarily ECS Components, which are
identified by the component process name.

Interface Mechanism: This column identifies how the interface is accomplished. It
defines the low level (normally software) mechanism used by the Interface Client and
Provider to exchange necessary information. This is also shown in the scenario diagrams
for only the particular component interaction between subsystems – consult the key.

Description: This column contains text describing what is occurring during this step. It
describes what is occurring in the context of this scenario thread. It describes not only
what is happening, but also how it happens and how the client knows how to ask for it.

3.2.2 Scenario Process Flow
The ECS Science Data System is a complex collection of subsystems. There is no single path
through the many features of the system. However, there is a general logical flow through the
various capabilities. Figure 3.2.2-1 describes the key elements of this flow. Each of the elements
identified is described in more detail in the individual scenario threads.

Install
ESDT

Data Reprocessing

Data Distribution

Data Processing

SSI&T Data
Ingest

Data
Ordering

Figure 3.2.2-1. Scenario Process Flow

Install ESDT

All data interactions within the ECS are performed against Earth Science Data Types (ESDTs).
An ESDT is the logical object describing both the inventory holdings for particular data, and the
services (insert, acquire etc.) that can be applied to the data. Before a user (including DAAC
operations) can perform any data services against a data set in the ECS, the ESDT for the data
type must be installed. Installation includes defining the collection level and granule level
metadata in the inventory (Science Data Server), advertising the data type and it’s services,
defining metadata attribute valids in the Data Dictionary, and defining data events for
subscription.

SSI&T

Science Software Integration & Test (SSI&T) is the process Instrument Team developed
algorithms get qualified for use in the ECS production environment. Much of this process is
algorithm specific and/or manual or semi-automatic. These aspects are not dealt with in this
document. However, the reception of the original algorithm package (Delivered Algorithm

 3-8 313-CD-610-003

Package - DAP) and the qualified algorithm package (Science Software Archive Package -
SSAP) are automated tasks, and are covered in detail in the scenarios.

Data Ingest

Once the ESDT is defined, and any production algorithms have been integrated, the ECS is ready
to accept data and generate higher-level products. This document covers a number of different
data ingest scenarios that occur with ECS data.

Data Ordering

There are a number of ways data can be requested in the ECS. If the product exists in the
archive, a user can simply request it for distribution. If the product doesn’t exist, but the
algorithms for producing the product have been integrated, the user can request production.
Alternatively, if the product exists, but has been generated with a set of run-time parameters
different from those desired, the user can request the product be reprocessed.

Data Processing

Many products are produced automatically upon the availability of the necessary input data. But
in addition to this ‘standard’ production, the ECS also has the capability to produce products on-
demand in response to a user request. Both types of production, together with QA processing and
algorithm failure handling are described in detail in the scenarios.

Data Reprocessing

An important feature of the ECS is the capability to reprocess data when either the original
production data or algorithm was faulty, or if another user needs different execution parameters.

Data Distribution

Once data is generated or ingested into the ECS, it is made available to other users. The
distribution system provides for a flexible data delivery system providing data either
automatically based on pre-established event triggers or by direct request.

3.2.3 Error Handling and Processing

EcUtStatus is a class used throughout the ECS custom code for general error reporting. It is
almost always used as a return value for functions and allows detailed error codes to be passed
back up function stacks.

The following CSCIs perform error handling and processing via this class and other classes,
functions, and utility programs:

Data Server Subsystem (Science Data Server CSCI)

DsShError is a Science Data Server specific class used mainly for exception handling.

DsShErrorDetails is a Science Data Server class that can be used to convert error details (in an
EcUtStatus object) into more meaningful text messages.

The Science Data Server uses two main mechanisms for error handling.

1. Return Values

 3-9 313-CD-610-003

Functions can return an EcUtStatus object, which can be used to indicate a general
success/failure status. Also, more detailed information on the exact reason for the failure can be
provided. For example, a granule cannot be acquired because it has restricted access privileges.
This is the most widely used mechanism within the Science Data Server and in general these
errors get propagated back up to the top-level functions with ALOG error messages being
generated along the way.

2. Exceptions

Some functions (for example, class constructors) cannot return values to indicate success or
failure. These functions may throw exceptions, usually instances of the DsShError class. These
errors are usually caught by other functions at a low level and converted into EcUtStatus return
values (as described in 1).

In addition, the DsShErrorDetails class can be used to map error values (as contained in an
EcUtStatus object) into text messages. This enables better reporting of errors in the Science Data
Server logs.

Currently, the Science Data Server client interface only supports returning error messages back
to client programs, along with a generic success/failed status.

For writing messages to the Applications Log (ALOG), the following functions are used:

DsLgLogError sends a message to the ALOG at severity level 1. For example, DsLgLogError
("DsMdMetadataCheckpoint1", "Bad granule UR");

DsLgLogWarning sends a message to the ALOG at severity level 2. For example,
DsLgLogWarning ("DsMdMetadataCheckpoint2", "Unable to retrieve granule metadata");

DsLgLogInformational sends a message to the ALOG at severity level 3. For example,
DsLgLogInformational ("DsMdMetadataCheckpoint3", "Failed to construct granule");

For writing messages to the debug log, the following macros are used:

PF_STATUS writes a message at a "log level" of 1 to the debug log. For example, PF_STATUS
{cerr << "Issue rpc to STMGT" << endl;}

PF_VERBOSE writes a message at a "log level" of 2 to the debug log. For example,
PF_VERBOSE {cerr << "Request received from client" << endl;}

PF_DEBUG writes a message at a "log level" of 3 to the debug log. For example, PF_DEBUG
{cerr << "Saved request to database" << endl;}

Data Server Subsystem (STMGT CSCI)

The Storage Management (STMGT) CSCI uses the following classes to deal with errors:

The class EcUtStatus is used to hold the actual error number when an error occurs. The
EcUtStatus object is returned to the STMGT clients when the request is complete. The class
DsStErrorDetails is used to extract the error type and severity information from the EcUtStatus
class.

 3-10 313-CD-610-003

The class DsShLogging is used throughout the STMGT code to control the writing of error
messages to the application log files and debug log files. This class uses the ECS standard
logging functions and macros. Errors can also be logged to the DsStEventLog table within the
STMGT database. These errors can be viewed with the STMGT GUI. These errors are
periodically removed by the DsStRequestManager Server / GRCleanup Stored Procedure.

Here is an example of how logging is used:

EcUtStatus status;

.

.

.

if (somethingWentWrong)

{

ourDsStLogging.LogAndSetError(status, DsEStInternalSybError,

"DBIF:FetchQueryResult: ct_fetch failed");}

The program EcDsStErrorFilesGenerator is used to generate the various error codes used by
STMGT into the STMGT database.

Data Server Subsystem (DDIST CSCI)

The class EcUtStatus is used to hold the actual error number. The EcUtStatus object is returned
to the DDIST clients when the request is complete.

The Data Dictionary Server CSCI uses two main mechanisms for error handling.

1. Return Values

Functions can return an EcUtStatus object, which can be used to indicate a general
success/failure status. Also, more detailed information on the exact reason for the failure can be
provided. This is the most widely used mechanism within the Data Dictionary Server and in
general these errors get propagated back up to the top-level functions with ALOG error messages
being generated along the way.

2. Exceptions

Some functions (for example, class constructors) cannot return values to indicate success or
failure. These functions may throw exceptions, usually instances of the DsShError class. These
errors are usually caught by other functions at a low level and converted into EcUtStatus return
values (as described in 1).

In addition, the DsShErrorDetails class can be used to map error values (as contained in an
EcUtStatus object) into text messages. This enables better reporting of errors in the DDIST logs.

Currently, the DDIST client interface only supports returning error messages back to client
programs, along with a generic success/failed status.

 3-11 313-CD-610-003

For writing messages to the Applications Log (ALOG), the following functions are used:

EcLgLogError sends a message to the ALOG at severity level 1. For example,

catch (DsShError& err)

{EcLgLogError ("DsDdSchedulerExecuteFunctionError”, 0, err.GetMsg());}

EcLgLogInformational sends a message to the ALOG at severity level 3. For example,
EcLgLogInformational ("ConfigVarMissing”, status.GetLogMessageLink(),

 "EcCUtRpcClientIDConfigTag var not set in Config File.");

For writing messages to the debug log, the following macros are used:

PF_STATUS writes a message at a "log level" of 1 to the debug log. For example,
PF_STATUS{cerr << "DsDdCBCache::Create Creating first instance." << endl;}

PF_VERBOSE writes a message at a "log level" of 2 to the debug log. For example,
PF_VERBOSE{cerr << "Calling DsStArchive::Create . ReqID | FullArchiveID:\n"

 << myRequestID <<" | " << FullArchiveID << " and\n"

 << "RpcID = " << RpcId_CR.AsString() << endl;}

PF_DEBUG writes a message at a "log level" of 3 to the debug log. For example,

PF_DEBUG {cerr << "DsDdDistRequestS::SetPriority. Request: "

 << myRequestID << " Priority: " << Priority << endl;}

Data Processing Subsystem (PRONG & AITTL CSCIs)

The Data Processing Subsystem (DPS) uses the EcUtStatus class for general error handling. It is
almost always used as a return value for functions and allows detailed error codes to be passed
back up function stacks.

The PRONG and AITTL CSCIs use two main mechanisms for error handling.

1. Return Values

Functions can return an EcUtStatus object, which can be used to indicate a general
success/failure status. Also, more detailed information on the exact reason for the failure can be
provided. This is the most widely used mechanism within the PRONG and AITTL and in general
these errors get propagated back up to the top-level functions with ALOG error messages being
generated along the way.

2. Exceptions

Some functions (for example, class constructors) cannot return values to indicate success or
failure. These functions can throw exceptions. These errors are usually caught by other functions
at a low level and converted into EcUtStatus return values (as described in 1).

Currently, the PRONG and AITTL CSCIs client interfaces only support returning error messages
back to client programs, along with a generic success/failed status.

 3-12 313-CD-610-003

In addition, the PRONG and AITTL use the following method of tracking errors; stored
procedure tracing. Some PRONG and AITTL stored procedures write error and informational
messages to a table in the Planning and Data Processing Subsystems (PDPS) database named
DpPrTrace. The stored procedure ProcInsertTrace is used to do this. A trigger on this table
truncates the messages after 10,000 messages have been written to the table. There are no other
specialized error libraries and classes used by the PRONG and AITTL.

Column Example

Time Apr 2 2002 14:01:27.960000
Procedure Name ProcGetReadyDPRs
Called From (NULL)
Dpr Id MODPGE02#s28021500OPS
Message 99 pgeId slots available for pgeId MODPGE02#syn#001

Example Row from the DPS DpPrTrace Table

For writing messages to the Applications Log (ALOG), the following functions are used:

EcLgLogError sends a message to the ALOG at severity level 1. For example, EcLgLogError
(methodName,

 returnStatus.GetLogMessageLink(),

 "Error: unable to copy tar file from '%s%s' to '%s' ",

 dataserverpath.data(), pgeTarName.data(),

 destinationPath.data());

EcLgLogWarning sends a message to the ALOG at severity level 2. For example,
EcLgLogWarning(methodName, lstatus.GetLogMessageLink(), "error terminating DPR job") ;

EcLgLogInformational sends a message to the ALOG at severity level 3. For example,
EcLgLogInformational(methodName,

 status.GetLogMessageLink(),"not using DpPrAutoSysProfile");

For writing messages to the debug log, the following macros are used:

PF_STATUS writes a message at a "log level" of 1 to the debug log. For example,

PF_STATUS {cerr << methodName << "Can't retrieve DpPrDeleteFailedPGEJobs";

cerr << " param. -- setting to FALSE" << endl;}

PF_VERBOSE writes a message at a "log level" of 2 to the debug log. For example,

PF_VERBOSE {cerr << methodName <<"urName = " << urName << endl;}

PF_DEBUG writes a message at a "log level" of 3 to the debug log. For example,

PF_DEBUG {cerr << methodName << "can not get PF config file pointer!" << endl;}

 3-13 313-CD-610-003

Planning Subsystem (PLANG CSCI)

The Planning Subsystem (PLS) uses the EcUtStatus class for general error handling. It is used
mostly as a return value for functions and allows detailed error codes to be passed back up
function stacks.

The PLANG CSCI uses two main mechanisms for error handling.

1. Return Values

Functions can return an EcUtStatus object, which can be used to indicate a general
success/failure status. Also, more detailed information on the exact reason for the failure can be
provided. For example, a granule cannot be acquired because it has restricted access privileges.
This is the most widely used mechanism within the PLANG and in general these errors get
propagated back up to the top-level functions with ALOG error messages being generated along
the way.

2. Exceptions

Some functions (for example, class constructors) cannot return values to indicate success or
failure. These functions can throw exceptions. These errors are usually caught by other functions
at a low level and converted into EcUtStatus return values (as described in 1).

Currently, the PLANG client interface only supports returning error messages back to client
programs, along with a generic success/failed status.

In addition, the PLANG has a class called PlDetailedError.h in
/ecs/formal/PDPS/PLS/PLANG/src/Corelib to exchange information between corelib classes and
the Production Request Editor Graphical User Interface (GUI).

For writing messages to the Applications Log (ALOG), the following functions are used:

EcLgLogError sends a message to the ALOG at severity level 1. For example, EcLgLogError
("CANTGETEXISTINGDEMPGEIDS", status.GetLogMessageLink(),"Failed to get existing
DEM pgeIds");

EcLgLogWarning sends a message to the ALOG at severity level 2. For example,
(EcLgLogWarning
("CANTRETRIEVEPRIMARYINPUTS",status.GetLogMessageLink(),"Failed to retrieve
primary inputs.");

EcLgLogInformational sends a message to the ALOG at severity level 3. For example,
EcLgLogInformational ("SUBMITSUBSUCCESS", 0,"Able to submit subscription for Data
Type %s",myDataTypeId.data());

For writing messages to the debug log, the following macros are used:

PF_STATUS writes a message at a "log level" of 1 to the debug log. For example,

PF_STATUS {cerr <<"PlNotification::DbConnect" << endl;

 cerr <<"Successfully connected user " << endl;}

 3-14 313-CD-610-003

PF_VERBOSE writes a message at a "log level" of 2 to the debug log. For example,

PF_VERBOSE {cerr << "DPR no longer present in database. Continuing "

 << "to process PR." << endl;}

PF_DEBUG writes a message at a "log level" of 3 to the debug log. For example,

PF_DEBUG {cerr << "SQL statement: " << sqlStatement << endl;}

INGEST Subsystem (INGST CSCI)

The INGEST Subsystem (INS) uses the class EcUtStatus for general error reporting. It is used
mostly as a return value for functions and allows detailed error codes to be passed back up
function stacks.

DsShError is a Science Data Server specific class used by INGEST for printing the line number
in the code where an error occurred.

The INGST CSCI uses two main mechanisms for error handling.

1. Return Values

Functions can return an EcUtStatus object, which can be used to indicate a general
success/failure status, as well as more detailed information on the exact reason for the failure.
This is the most widely used mechanism within INGST and in general, these errors get
propagated back up to the top-level functions with ALOG error messages being generated along
the way.

2. Debug Messages

The Ingest code uses the PF_STATUS, PF_VERBOSE and PF_DEBUG macros to log messages
to the debug logs. These macros are part of the EcPfGenProcess class.

For writing messages to the debug log, the following macros are used:

PF_STATUS writes a message at a "log level" of 1 to the debug log. For example,

PF_STATUS {cerr << "InDataPreprocessTask::Preprocess successful. ";

 cerr << "RequestID="<< myRequestID<< " GranuleID="<<myGranuleID <<"
CollectionName="<<myDataType<< endl;}

PF_VERBOSE writes a message at a "log level" of 2 to the debug log. For example,

PF_VERBOSE {cerr << "InFDDorbitMetadata::Preprocess() " << endl;

 cerr << "Byte-ordered FDD Orbit Metadata preprocessing successful. ";

 cerr << "RequestID="<< myRequestID << ", ";

 cerr << "GranuleID="<< myGranuleID << ", ";

 cerr << "CollectionName=" << myDataType.data() << endl;

 cerr << "myInputFile: " << myInputFile.data() << endl;}

 3-15 313-CD-610-003

PF_DEBUG writes a message at a "log level" of 3 to the debug log. For example,

PF_DEBUG {cerr << __FILE__ << ":" << __LINE__ << endl;

 cerr << "InDataPreprocessTask::PreprocessSceneMetadata ";

 cerr << "browseFileName = " << browseFileName << endl;

 cerr << "DataType = " << myDataType ;

 cerr << "VersionID = " << myVersionID;

 cerr << "RequestID="<< myRequestID<< " GranuleID="<<myGranuleID << endl; }

In addition, INGST generates the following special messages: PDRD and PAN.

1. Product Delivery Record Discrepancy (PDRD)/Data Availability Acknowledgement (DAA)

When there is a problem with a Product Delivery Record (PDR) (or Data Availability Notice
(DAN), INGST generates a PDRD or DAA message. The message can be sent via e-mail and/or
transferred (via FTP) if so configured. The code to generate these messages is in the InMsg
library.

1. Production Acceptance Notification (PAN)/Data Delivery Notice (DDN) messages

When an INGST request has completed, INGST generates a PAN or DDN message. The
message can be sent via e-mail and/or transferred (via FTP) if so configured. The code to
generate these messages is in the InMsg library.

Communications Subsystem (DCCI CSCI) and

System Management Subsystem (MCI and MLCI CSCIs)

When an error occurs, the error is logged into the applications log (ALOG). The
Communications Subsystem (CSS) and System Management Subsystem (MSS) have two main
mechanisms to handle the error:

1. Return an error status

2. Throw an exception

The CSS uses the following classes for error handling and processing:

The EcUtStatus class is used to describe the operational status of many functions. The values
most often reported are "failed" and "ok." But depending upon the application, detailed values
could be set and sent. Please refer to the definition of this class (located in
/ecs/formal/COMMON/CSCI_Util/src/Logging/EcUtStatus.h) for all possible values.

The EcPoError class defines the basic error types and handling functions for using the
EcPoConnectionsRW class (based upon RWDBTool++). The Subscription Server and MSS
Order tracking Server use the EcPoConnectionsRW class.

The RWCString is used to store some status value returned by applications.

 3-16 313-CD-610-003

Integer is used to return some error status by applications. This is used specifically between
client and server communications.

Many types of exceptions can be sent and handled by the CSS. These include exceptions sent by
Commercial Off The Shelf (COTS) products (such as DCE, RWDBTools++, and RWTools++),
systems and exceptions defined by individual applications.

For writing messages to the debug log, the following macros are used:

PF_STATUS writes a message at a "log level" of 1 to the debug log. For example,

PF_STATUS {cerr << "EcSbSubServer: Host name = " << hostInfo.nodename << endl;}

PF_VERBOSE writes a message at a "log level" of 2 to the debug log. For example,
PF_VERBOSE {cerr << "EcSbUpdateSubRequest:Update: Succeeded." << endl;}

PF_DEBUG writes a message at a "log level" of 3 to the debug log. For example,

PF_DEBUG {cerr << "EcSbSubscription:Execute: Action = ACQUIRE : " << endl;

 cerr << *tmpAction << endl;}

Client Subsystem (WKBCH, ODFRM and DESKT CSCIs)

The WKBCH CSCI contains the EOSView and Java DAR Tool (JDT) standalone COTS
products. EOSView has it's own custom error handling.

The JDT uses the Java exception facilities to check error conditions. Exceptions are either
handled in the class that produced the error or they are sent back to the calling method/class. At
some point in the calling chain, the exception is either handled by the application code or it is
dumped out in the stack trace (which appears in the Java Console if it's a client-side exception or
in the jess.log if it's a server-side exception). The JDT's exception classes are organized in an
exceptions package (jdt.aux.exceptions).

The ODFRM CSCI has no special error handling. ODFRM is a cgi application, which uses
EcUtStatus to communicate errors. Functions can return an EcUtStatus object, indicating success
or failure.

The DESKT CSCI consists of the User Profile Gateway. The User Profile Gateway uses
EcUtStatus and exceptions. Functions can return an EcUtStatus object, indicating success or
failure or throw an exception. The User Profile Gateway does not have any special error
processing.

Data Management Subsystem (DDICT, V0 GTWAY, ASTGW CSCIs)

The Data Dictionary Server, V0 GTWAY and ASTGW CSCIs use two main mechanisms for
error handling.

1. Return EcUtStatus values

Functions can return an EcUtStatus object, indicating success, failure or other detailed status,
which corresponds to EcUtStatus:OK, EcUtStatus:FAILED and EcUtStatus:DETAILED.

 3-17 313-CD-610-003

For V0ToEcsGateway, the EcUtStatus values are reflected on the EDG to indicate the search or
order status.

2. Exceptions

Some functions (e.g., a main function) cannot return EcUtStatus values to indicate success or
failure. These functions can catch some exceptions after a try block.

All errors messages will be sent to ALOG file or debug log file.

For writing messages to the Applications Log (ALOG), the following functions are used:

EcLgLogError sends a message to the ALOG at severity level 1. For example, EcLgLogError
("Error" , 0,"Failed to get Order ID from MSS. TransactionID=%s.",

 myTransactionId.data());

EcLgLogInformational sends a message to the ALOG at severity level 3. For example,
EcLgLogInformational ("DmGwManagedServer", 0, "Server Shutdown");

For writing messages to the debug log, the following macros are used:

PF_STATUS writes a message at a "log level" of 1 to the debug log. For example, PF_STATUS
cerr << "Unable to create inputNonAggregate " << endl;

PF_VERBOSE writes a message at a "log level" of 2 to the debug log. For example,
PF_VERBOSE cerr << "~~~ Connect to Science Data Server FAILED."

PF_DEBUG writes a message at a "log level" of 3 to the debug log. For example, PF_DEBUG
cerr << "~~~ Failed to get Order ID from MSS." << endl;

Product Distribution System (PDS) Subsystem

The PDS consists of two components, the Product Distribution System Input Server (PDSIS) and
the Product Distribution System Stand Alone (PDSSA). Both subsystems utilize Oracle Forms
as their main GUI. The GUIs display error messages to the user.

Product Distribution System (PDS) Input Server (PDSIS)

The PDSIS uses the Java exception facilities to check error conditions. Exceptions are either
handled in the class that produced the error or they are sent back to the calling method/class. At
some point in the calling chain, the exception is either handled by the application code or it is
dumped out in the stack trace and added to the error log for the PDSIS. The error log is located
under the logs/errors directory off the main PDSIS home directory.

The PDSIS also prints other messages that are located in the logs directory off the main PDSIS
directory. Subdirectories contain debug, in_msg (socket in), out_msg (socket out) messages.

Exceptions that are dumped out by the PDSIS cron jobs are mailed to the PDSIS user or can
alternatively be added to a log file that is created under the PDSIS account’s log directory. Users
do this both ways.

 3-18 313-CD-610-003

Product Distribution System (PDS) Stand Alone (PDSSA)

The PDSSA component uses a utility that is a part of the PDS code called log_printf to print
informational, warning, and error messages from the production modules. The messages are
written to the order’s summary log.

Errors generated by the PDSSA cron jobs are mailed to the PDSIS user or can alternatively be
added to a log file that is created under the PDSIS account’s log directory. Users do this both
ways.

Product Generation System (PGS) Toolkit

3.2.4 TOOLKIT Error/Status Reporting (SMF Tools)

To detect and report error and status conditions in a consistent manner standardized status
messages and status codes must first be established. The method used to institute these
message/code pairs is by way of the ‘smfcompile’ utility. But first, users need to create Status
Message Files (SMFs) to contain their custom status messages and corresponding status
identifiers. These identifiers take the form of user defined mnemonics that visually convey the
essence of the status message. The user makes direct use of these mnemonics in their software
when testing for status conditions and when interfacing with the SMF Toolkit functions. Once an
SMF is completed, the smfcompile utility is run to bind the status messages and mnemonics with
integral status codes. This process facilitates the run-time access of all status messages and
provides for the referencing of status mnemonics within the user’s code.

The status codes generated by the ‘smfcompile’ utility are guaranteed to be unique to ensure that
there are no ambiguous status conditions, in the event that code from different Science
Computing Facilities (SCFs) is merged into a single executable and/or PGE. This uniqueness is
possible because “seed” values, which are different for every SMF, are used in the generation of
the status codes. Typically, many SMF files are created in the course of software development;
therefore many seed numbers are required. However, it is important to note that valid seed
numbers can only be obtained from the Toolkit development team. Any attempt to produce
SMFs from “home-grown” seed values can result in the SMFs being unusable at integration &
test time.

The SDP Toolkit routines actually contain their own collection of status codes and associated
status messages for describing the state of each Toolkit function. Users of the Toolkit functions
should examine the return values of each tool before performing any other action. To inform a
calling unit (user’s software) about the exit state of a called Toolkit routine, each Toolkit
function sets a status message and assigns a status code to the return value. On the basis of its
interpretation of this return value, the calling unit may elect to perform some error handling. As
part of this procedure, the user should either propagate the existing status code up through their
calling hierarchy, or set a status code and message to represent the outcome of any local error
handling attempt.

Upon detection of an error state, users are advised to report on the existing error prior to
performing an error handling procedure. The content of these reports might include the
following:

 3-19 313-CD-610-003

• A user-defined message string to convey the nature of the status condition

• A user-defined action string to indicate the next operation to be performed in response to the
status condition

• A system defined string that uniquely identifies the environment in which the status
condition occurred.

However, this is merely a suggestion; the users are free to define the content of the status reports
to satisfy their own requirements. The method for reporting this information involves the
generation of a report from the information just described and the subsequent transmission of
that report to the appropriate destination(s).

The tools provided here allow for the propagation of status information within a PGE executable
to facilitate a user’s error handling process. They also provide the means to communicate status
and error information to various monitoring authorities and event logs. Additionally, there is a
tool that enables the user to specify, a priori, the action to be taken in the wake of a fatal
arithmetic event. This mechanism allows users to take their own corrective measures to control
an event that is terminal by default. Note that all other event conditions fall under the purview of
system processing and are thereby controlled by the governing SDPS software.

Several new features have been incorporated into these tools for Toolkit 5 in order to improve
their efficiency. One of those features allows for the buffering of individual status messages up
to some user defined run-time limit. This should greatly reduce the amount of I/O required to
access these messages. As a process proceeds to completion, new status messages are buffered as
older; less used status messages become un-buffered. The goal here is to only access status
messages from their run-time file when they are being referenced for the first time. The actual
observed improvement depends on the degree to which a process’ status messages are localized
(i.e., A particular status message should ideally only be referenced within a short body of code.)
and the buffer size, which is set by the user. Another feature reduces the number of replicated
status messages that can appear in the status log file. This is accomplished by “compressing”
duplicate messages into a count of such messages. This feature should significantly reduce the
size of the status log file and contribute to its general readability.

Since each function has only one return value, every effort has been made to preserve the most
important warning or error value on returning. Given that subordinate functions often have
several possible returns, and different users have different priorities, it is always advisable to
check the message log as well as examining the return. When totally inconsistent behavior is
found in a return from a subordinate function, the returned value is PGS_E_TOOLKIT.
Example: a Toolkit function passes an internally generated vector, whose length is certain to be
nonzero, to a subordinate function. The lower-level function then returns a warning or error
return stating that the vector is of zero length; while the higher-level function returns
PGS_E_TOOLKIT. Another example: if a valid spacecraft tag is passed in, but rejected as
invalid down the processing line, the error PGS_E_TOOLKIT is returned by the higher-level
function. Thus return value PGS_E_TOOLKIT indicates a flaw in the software, the violation of
an array boundary; a hardware, compiler, or system error; corrupted data, or some similarly
serious condition that invalidates the processing.

 3-20 313-CD-610-003

Logging Control

PCF entry:
10114|Logging Control; 0=disable logging, 1=enable logging|1

This can be used to disable logging altogether. If logging is disabled NO message will output to
any log files (although a small header is still written to the log files indicating logging for this
PGE has been disabled). The Default State is for logging to be enabled.

Trace Control

PCF entry:
10115|Trace Control; 0=no trace, 1=error trace, 2=full trace|0

This can be used to specify the trace level for message logging. Tracing is a feature made
possible by the addition of two SMF tools: PGS_SMF_Begin and PGS_SMF_End. Users may
include these tools at the beginning and ending of their functions (respectively) to signal to the
SMF system when each user defined function is entered and exited. Three levels of tracing are
possible:

No Tracing

This is the Default State. No information concerning the entering or exiting of functions is
recorded to the log files. No information concerning the path of a function call is recorded to the
log files.

Example Log Entry:
func4():PGSTD_W_PRED_LEAPS:27652
predicted value of TAI-UTC used (actual value unavailable)

Error Tracing

If error tracing is enabled, information concerning the path of a function call is recorded to the
log files any time a status message is logged to a log file. This is useful in determining where in a
chain of function calls an error occurred. No information concerning the entering or exiting of
functions is recorded in this state.

Example Log Entry:
main():
 func1():
 func2():
 func3():
 func4():PGSTD_W_PRED_LEAPS:27652
 predicted value of TAI-UTC used (actual value unavailable)

Full Tracing

If full tracing is enabled, a message is written to the log files each time a function is entered and
exited (only those user functions with the PGS_SMF_Begin/End calls, see above). Indenting is
also done to show the path of each function call.

 3-21 313-CD-610-003

Example Log Entry:

PGS_SMF_Begin: main()

 PGS_SMF_Begin: func1()

 PGS_SMF_Begin: func2()

 PGS_SMF_Begin: func3()

 PGS_SMF_Begin: func4()

 func4():PGSTD_W_PRED_LEAPS:27652
 predicted value of TAI-UTC used (actual value unavailable)

 PGS_SMF_End: func4()

PGS_SMF_End: func3()

PGS_SMF_End: func2()

PGS_SMF_End: func1()

PGS_SMF_End: main()

Process ID Logging

PCF entry:
10116|Process ID logging; 0=don’t log PID, 1=log PID|0

This can be used to enable the tagging of log file entries with the process ID of the process from
which the entry came. This is useful for PGEs that run concurrent processes that are all writing to
a single log file simultaneously. If process ID logging is enabled, each log entry is tagged with
the process ID of the process making the entry. This can facilitate in post-processing a log file.

Example Log Entry:
func4():PGSTD_W_PRED_LEAPS:27652 (PID=2710)
predicted value of TAI-UTC used (actual value unavailable)

Status Level Control

PCF entry:
10117|Disabled status level list (e.g., W S F)|<status level list>

This can be used to disable the logging of status codes of specific severity levels. A list of levels
to be disabled should be substituted for <status level list> (e.g.: N M U). No message of a status
level indicated in the list is recorded to any log. The Default State is to enable logging for all
status levels.

Status Message Seed Control

PCF entry:
10118|Disabled seed list|<status code seed list>

 3-22 313-CD-610-003

This can be used to disable the logging of status codes generated from specific seed values. A list
of seed values, the status codes derived from which should be disabled, should be substituted for
<status code seed list> (e.g.: 3 5). No message derived from a seed value indicated in the list is
recorded to any log. The Default State is to enable logging for all seed values.

Individual Status Code Control

PCF entry:
10119|Disabled status code list|<status code list>

This can be used to disable the logging of specific status codes. A list of status code mnemonics
and/or numeric status codes should be substituted for <status code list> (e.g.:
PGSTD_M_ASCII_TIME_FMT_B 678954). Note that using mnemonics can disable only
Toolkit status codes. To disable a user generated status code a numeric status code must be used.
No messages whose status codes or mnemonics included in the list are recorded to any log file.
The Default State is to enable logging for all status codes.

Generating Runtime E-Mail Messages

A PGE may be configured to automatically generate and send e-mail messages during run-time
when specific user defined status codes are logged. This is done by assigning an e-mail action to
a given user defined status code.

An e-mail action is an SMF code with the special status level of “C” and a mnemonic that begins
with the characters “PGSEMAIL” (the rest of the mnemonic may contain any other valid
mnemonic characters), for example:

PGS_C_PGSEMAIL_SEND_EMAIL
ASTER_C_PGSEMAIL_ALERT
MODIS_C_PGSEMAIL_ERROR

An e-mail message is generated anytime a user defined status code with an associated e-mail
action is logged via the SMF logging routines. The contents (body) of these messages are the
text (message) associated with the user defined status code. The subject of these messages is the
mnemonic associated with the user defined status code. The list of recipients is defined in the e-
mail action definition.

Example:
In a user defined status message file the following status code mnemonic label and e-mail action
mnemonic label have been defined (the e-mail action is associated with the status code via the
“::” syntax):

MODIS_E_PGE_INIT_FAILED The PGE failed to initialize.
 ::MODIS_C_PGSEMAIL_NOTIFY
MODIS_C_PGSEMAIL_NOTIFY john@modis.org, sue@modis.org

The following lines appear in a C source code file:

 returnStatus = initializePGE();
 if (returnStatus == MODIS_E_PGE_INIT_FAILED)

 3-23 313-CD-610-003

 {
 PGS_SMF_SetStaticMsg(returnStatus, “main()”);
 exit(1);
 }

At run-time, if the returned status code from the function initializePGE() has the value defined
by MODIS_E_PGE_INIT_FAILED, this status is logged via the SMF function
PGS_SMF_SetStaticMsg(), and because this status code has an e-mail action associated with it,
an e-mail message is generated.

The e-mail message is sent to: sue@modis.org and john@modis.org
The subject field of the e-mail message is: MODIS_E_PGE_INIT_FAILED
The text of the e-mail message is: The PGE failed to initialize.

Note:
This functionality is disabled at the DAACs.

3.2.5 Memory Management
Object-oriented modeling and design is a new way of thinking about problems using models
organized around real-world concepts. The fundamental construct is the object, which combines
both data structure and behavior in a single entity. Objected-oriented models are useful for
understanding problems, communicating with application experts, modeling enterprises,
preparing documentation and designing programs and databases.1

Superficially, the term "object-oriented,” means that we organize software as a collection of
discrete objects that incorporate both data structure and behavior. This is in contrast to
conventional programming in which data structure and behavior are only loosely connected.
There is some dispute about exactly what characteristics are required by an object-oriented
approach, but generally include four aspects: identity, classification, polymorphism and
inheritance.1

Identity means that data is quantized into discrete, distinguishable entities called objects. A
paragraph in my document, a window on my workstation and a white queen in a chess game are
examples of objects. Objects can be concrete, such as a file, or conceptual, such as a scheduling
policy in a multi-processing operating system. Each object has its own inherent identity. In other
words, two objects are distinct even if all their attribute values (such as name and size) are
identical.1

In the real world an object simply exists, but within a programming language each object has a
unique handle by which it can be uniquely referenced. The handle may be implemented in
various ways, such as an address, array index or unique value of an attribute. Object references
are uniform and independent of the contents of the objects, permitting mixed collections of
objects to be created, such as a file system directory that contains both files and sub-directories.1

Classification means that objects with the same data structure (attributes) and behavior
(operations) are grouped into a class. Paragraph, Window, and ChessPiece are examples of
classes. A class is an abstraction that describes properties important to an application and ignores
the rest. Any choice of classes is arbitrary and depends on the application.1

 3-24 313-CD-610-003

Each class describes a possibly infinite set of individual objects. Each object is said to be an
instance of its class. Each instance of the class has its own value for each attribute but shares the
attribute names and operations with other instances of the class. An object contains an implicit
reference to its own class: it "knows what kind of a thing it is."1

Polymorphism means that the same operation may behave differently on different classes. The
move operation, for example, may behave differently on the Window and ChessPiece classes. An
operation is an action or transformation that an object performs or is subject to. Right justify,
display and move are examples of operations. A specific implementation of an operation by a
certain class is called a method. Because an object-oriented operator is polymorphic, it may have
more than one method implementing it.1

In the real world, an operation is simply an abstraction of analogous behavior across different
kinds of objects. Each object "knows how" to perform its own operations. In an object-oriented
programming language, however, the language automatically selects the correct method to
implement an operation based on the name of the operation and the class of the object being
operated on. The user of an operation need not be aware of how many methods exist to
implement a given polymorphic operation. New classes can be added without changing existing
code, provided methods are provided for each applicable operation on the new classes.1

Inheritance is the sharing of attributes and operations among classes based on a hierarchical
relationship. A class can be defined broadly and then refined into successively finer subclasses.
Each sub-class incorporates, or inherits all the properties of its super-class and adds its own
unique properties. The properties of the superclass need not be repeated. For example,
ScrollingWindow and FixedWindow are subclasses of Window. Both subclasses inherit the
properties of Window, such as a visible region on the screen.1

The ECS is a large, complex data storage and retrieval system used to store and retrieve large
amounts of science and science-related data. The system was designed using an object oriented
design approach. With so many objects and the sizes of some of them, it is necessary to have
some insight into the amount of memory being utilized within the ECS. The information about to
be presented is a brief look at the memory management of the "key" (top ten utilized) objects
within the ECS subsystems.
In this object oriented system design, objects are created and used via classes throughout the
system to help perform the functions and meet the needs of the system. The objects for the ECS
are very numerous, sometimes very large and cannot be provided in their entirety at this time.
However, presented in the table below are the "key" objects for this subsystem and how they are
created, passed and deleted within the ECS.
Introduction to memory management approaches and memory usage table

Good memory management in some applications is both important and requires significant
planning and development time. Many important ECS applications are large, long running,
multi-threaded, heavy memory users and therefore are prime candidates for improved memory
management.

Improper memory management can result in memory leaks, fast memory usage growth or large
application footprints and random crashes. ECS servers are periodically purified for memory

 3-25 313-CD-610-003

leaks and there is a history of progress in this area. Similar work should be expected to continue
as development and maintenance continues.

Long running server like applications that are free from memory leaks can nonetheless have
significant memory and Central Processing Unit (CPU) usage performance degradation. A
common culprit is heap fragmentation. The repeated allocation and deallocation of memory
(such as with the new and delete operators of C++) can result in a large number of unusable free
blocks of memory. They are free blocks but are interspersed with non-free blocks. They become
unusable since they are not contiguous (fragmented) and as time goes by, it becomes harder and
harder for the OS to service requests for more memory. Such situations even lead to crashes of
other, non-offending applications running in the same box.

There are strategies, tools and software to avoid both memory leaks and fragmentation. This
includes but is not limited to:
1. Periodic application of purification software (already an ECS practice)
2. Software design, which uses dynamic memory as little as possible, such as automatic storage

or COTS data structures
3. Class-level memory management to allocate large chunks of memory instead of one class

instance at a time ("Effective C++" by Scott Meyers and "Advanced C++" by James Coplien
address this technique)

4. Non-class level memory pools and
5. COTS heap manager
The table below is provided in case further memory management improvements are desired.
Given operator or field input of seemingly inefficient memory or CPU usage, this table can be
used to help target specific ECS subsystems, servers and frameworks or classes for
improvement. It can be decided to apply some of the approaches at one level (e.g., on one guinea
pig server or class) or perhaps experiment with changing the entire ECS C++ system with the use
of a COTS heap manager. In any case, a great deal of planning and manpower is required.

 3-26 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (1 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

DSS -
SDSRV

EcDsScienceD
ataServer

DsSrSession Manages threads to
execute requests
associated with the
Working
Collection.

EcDsScience
DataServer
(class:
DsSrConnecti
onMaker)

DsSrMana
gedServer

DsSrManage
dServer

One per
DsSrWork
ingCollecti
on

Object is deleted
when the Science
Data Server goes
down.

EcDsScienceD
ataServer

DsSrWorkingColl
ection

A “shopping
basket” class
containing a vector
of ESDTs used to
execute requests.

EcDsScience
DataServer
(class:
DsSrSession
class).

EcDsScien
ceDataServ
er (class:
DsSrWarm
StartManag
er)

Deleted
when its
correspondin
g
DsSrSession
object is
deleted.

One per
DsSrSessi
on object.

EcDsScienceD
ataServer

DsSrWarmStartM
anager

Singleton class
controlling
processing of
asynchronous
requests.

EcDsScience
DataServer
(class:
DsSrManaged
Server)

not passed EcDsScience
DataServer

Either 1
instance or
no
instances
for all of
SDSRV.

Static singleton
class. Object is
deleted when the
Science Data
Server goes
down.

 3-27 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (2 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

 Clients,
EcDsScienceD
ataServer

DsShRequestReal This class provides
a server interface to
the server's request
distributed object. It
inherits from the
DCE-generated
server request class,
and adds functions
to provide stronger
type checking.

Clients,
EcDsScience
DataServer

EcDsScien
ceDataServ
er or other
servers
related

When
request is
finished or
server goes
down

1 per client
request.

This class
communicates
between clients
and
EcDsScienceData
Server.

 3-28 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (3 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

 Clients
and
EcDsScienceD
ataServer

GlParameterList This library is used
by many
subsystems to
provide a general-
purpose list object
for storing various
scalar and complex
data types.

Clients
and
EcDsScience
DataServer

EcDsScien
ceDataServ
er and
EcDsDistri
butionServ
er

Clients Could
have many
in each
request

To group one or
more
GlParameter
derived classes
that store the
various parameter
types required
building
commands. Any
Gl type,
including
embedded
GlParameterLists
can be inserted
into a
GlParameterList,
making it
recursive in
design.

 3-29 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (4 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

EcDsScienceD
ataServer

DsGeESDT Inherit from the
public class -
provides basic
ESDT
functionality.

EcDsScience
DataServer

EcDsDistri
butionServ
er,
EcDsStReq
uestManag
erServer
and other
related
application
s

EcDsScience
DataServer
and other
related
applications

1 per
granule

This class
provides
functionality
common to all
SDSRV data
types.

DsSrManaged
Server::DsSrSt
art()

DsBtSbsrvNotifier This class is used to
facilitate
communication
between the
SDSRV and
SBSRV through an
event queue.

EcDsScience
DataServer
[class::method
=
DsSrManaged
Server::DsSrS
tart()]

not passed EcDsScience
DataServer
[class::metho
d =
DsSrManage
dServer::DsS
rStart()]

Configura
ble

Only one
instance per
session is created.
The object goes
away when the
server goes
down.

 3-30 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (5 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

EcDsScienceD
ataServer
[function =
DsGeESDT::I
nsert()]

DsMdMetadata This class is used as
a container class for
metadata.

EcDsScience
DataServer
[function =
DsGeESDT::I
nsert()]

not passed See
comments/re
marks
column.

1 per
DsGeESD
T

When this object
is instantiated, it
uses the local
memory
manager. The
object can be
saved to the
database if the
user is executing
an insert.

EcDsScienceD
ataServer [
class::method=
DsSrGenCatal
ogPool:::DsSr
GenCatalogPo
ol()]

DsMdCatalog This class is used to
manage catalog
pools.

DsSrGenCatal
ogPool:::DsSr
GenCatalogPo
ol()

not passed EcDsScience
DataServer

Depends
on the
configured
pool size.

There are three
default pools for
catalogs:
SEARCH,
INSERT and
DEFAULT. The
object goes away
when the server
goes down.

 3-31 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (6 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

EcDsScienceD
ataServer

DsDbInterface Database (Sybase)
interface class to
encapsulate
database related
services such as:
connect, execute,
fetch result

EcDsScience
DataServer

not passed When
EcDsScience
DataServer is
down

2 per
DsMsCatal
og

User can connect
to DB, execute
SQL statements,
verify connection
states and
disconnect from
the database.

Clients DsClESDTRefere
nceCollector

Provides the
primary interaction
mechanism for
client software.

Clients EcDsScien
ceDataServ
er

EcDsSdsrvT
est or
EcDsTsClien
tDriver
or when
clients go
down

1 per client
connection

As its name
implies, it is a
collector of the
DsClESDTRefer
ence object
referred to as the
clients "working
collection",
which is
populated with
the results of
service requests
such as
“Acquire”,
”Insert”,
”Search."

 3-32 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (7 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

PDS pdsis.jar –
start script
EcPdPDSISSs
erver

EcPdPDSISSserv
er

Creates listening
socket for order
requests. Reads
requests and enters
them into the
PDSIS system

pdsis.jar –
start script
EcPdPDSISSs
erver

Not Passed When server
stopped

1 Validates
incoming ODL
data and passes
back to sender
order status.

OM EcOmOrderM
anager

OmSrDispatchQu
eue

Queues all the
requests up in
different queues
according to their
destinations and
functionalities

EcOmOrderM
anager

Not Passed When server
stopped

Four (4)
queues per
EcOmOrd
erManager

 3-33 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (8 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

DSS -
STMGT

EcDsStReques
tManagerServ
er
EcDsStCache
ManagerServe
r
EcDsStStaging
DiskServer
EcDsStArchiv
eServer
EcDsStFtpSer
ver

DsStDictionary Maps a string name
to a string value

EcDsStReque
stManagerSer
ver
EcDsStCache
ManagerServe
r
EcDsStStagin
gDiskServer
EcDsStArchiv
eServer
EcDsStFtpSer
ver
EcDsStmgtGu
i

not passed

not passed

not passed

not passed

not passed

not passed

EcDsStRequ
estManagerS
erver
EcDsStCach
eManagerSer
ver
EcDsStStagi
ngDiskServe
r
EcDsStArchi
veServer
EcDsStFtpSe
rver
EcDsStmgtG
ui

Used in
Singleton
DsStStPro
cTable

Object is deleted
when the server
goes down.

 3-34 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (9 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

DSS -
STMGT

EcDsStReques
tManagerServ
er
EcDsStCache
ManagerServe
r
EcDsStStaging
DiskServer
EcDsStArchiv
eServer
EcDsStFtpSer
ver
EcDsStmgtGui

DsStStProcTable A singleton used to
create a dictionary
that associates a
stored procedure
name with a list of
parameters in the
order that they
appear in the stored
procedure
declaration.

EcDsStReque
stManagerSer
ver
EcDsStCache
ManagerServe
r
EcDsStStagin
gDiskServer
EcDsStArchiv
eServer
EcDsStFtpSer
ver
EcDsStmgtGu
i

not passed

not passed

not passed

not passed

not passed

not passed

EcDsStRequ
estManagerS
erver
EcDsStCach
eManagerSer
ver
EcDsStStagi
ngDiskServe
r
EcDsStArchi
veServer
EcDsStFtpSe
rver
EcDsStmgtG
ui

Singleton Object is deleted
when the server
goes down.

 3-35 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (10 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

 EcDsStReques
tManagerServ
er
EcDsStCache
ManagerServe
r
EcDsStStaging
DiskServer
EcDsStArchiv
eServer
EcDsStFtpSer
ver
EcDsStmgtGui
EcDsDistributi
onServer
EcInReqMgr
EcInGran

DsStRemoteTrans
action

Handles the remote
transactions for
stored procedure
call. It converts the
request in a format,
which can be
passed across a
network interface.

EcDsStReque
stManagerSer
ver
EcDsStCache
ManagerServe
r
EcDsStStagin
gDiskServer
EcDsStArchiv
eServer
EcDsStFtpSer
ver
EcDsStmgtGu
i
EcDsDistribut
ionServer
EcInReqMgr
EcInGran

not passed

not passed

not passed

not passed

not passed

not passed

not passed

not passed
not passed

EcDsStRequ
estManagerS
erver
EcDsStCach
eManagerSer
ver
EcDsStStagi
ngDiskServe
r
EcDsStArchi
veServer
EcDsStFtpSe
rver
EcDsStmgtG
ui
EcDsDistribu
tionServer
EcInReqMgr
EcInGran

4 per
request
(client
request
and result,
server
request
and result)

 3-36 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (11 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

EcDsStReques
tManagerServ
er
EcDsStCache
ManagerServe
r
EcDsStStaging
DiskServer
EcDsStArchiv
eServer
EcDsStFtpSer
ver
EcDsStmgtGui
EcDsDistributi
onServer
EcInReqMgr
EcInGran

DsStRemoteSP Parent class of
DsStRemoteTransa
ction

EcDsStReque
stManagerSer
ver
EcDsStCache
ManagerServe
r
EcDsStStagin
gDiskServer
EcDsStArchiv
eServer
EcDsStFtpSer
ver
EcDsStmgtGu
i
EcDsDistribut
ionServer
EcInReqMgr
EcInGran

not passed

not passed

not passed

not passed

not passed

not passed

not passed

not passed
not passed

EcDsStRequ
estManagerS
erver
EcDsStCach
eManagerSer
ver
EcDsStStagi
ngDiskServe
r
EcDsStArchi
veServer
EcDsStFtpSe
rver
EcDsStmgtG
ui
EcDsDistribu
tionServer
EcInReqMgr
EcInGran

Multiple
times per
request

DsStRequestM
anagerServer

DsStRequest Describes all
possible states of a
request

DsStRequest
ManagerServe
r

not passed DsStRequest
ManagerServ
er

1 per
request

 3-37 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (12 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

DsStRequestM
anagerServer

DsStRequestQueu
e

Provides queuing
mechanism for
DsStRequest
objects

DsStRequest
ManagerServe
r

not passed DsStRequest
ManagerServ
er

Singleton

EcDsScienceD
ataServer(DLL
),
EcDsDistributi
onServer,
EcDsStArchiv
eServer

DsStFileParamete
rs

Data structure to
maintain the file
related parameters

EcDsScience
DataServer
(DLL),
EcDsDistribut
ionServer,
EcDsStArchiv
eServer

not passed

not passed

not passed

EcDsScience
DataServer
(DLL),
EcDsDistribu
tionServer,
EcDsStArchi
veServer

Multiples
times per
request
within
Archive
server and
Archive
client

 3-38 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (13 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

EcDsStCache
ManagerServe
r,
EcDsStStaging
DiskServer,
DsStArchiveS
erver

DsStCopyService File I/O operation
for Copy service

EcDsStCache
ManagerServe
r,
EcDsStStagin
gDiskServer,
DsStArchiveS
erver

not passed

not passed

not passed

EcDsStCach
eManagerSer
ver,
EcDsStStagi
ngDiskServe
r,
DsStArchive
Server

One per
CacheMan
agerServic
eThread,
One per
StagingDis
kServiceT
hread,
One per
ArchiveWr
iteThread

The item should
be the
DsStCopyService
class rather than
the
DsStCopyService
::Copy function.

DSS -
STMGT

EcDsStCache
ManagerServe
r,
EcDsStStaging
DiskServer,
DsStArchiveS
erver

DsStFtpService::F
tpCopy()

File I/O operation
for Copy service

EcDsStCache
ManagerServe
r,
EcDsStStagin
gDiskServer,
DsStArchiveS
erver

not passed

not passed

not passed

EcDsStCach
eManagerSer
ver,
EcDsStStagi
ngDiskServe
r,
DsStArchive
Server

One per
CacheMan
agerServic
eThread,
One per
StagingDis
kServiceT
hread,
One per
ArchiveWr
iteThread

 3-39 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (14 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

 EcDsStCache
ManagerServe
r,
EcDsStStaging
DiskServer,
DsStArchiveS
erver

DsStFtpService::F
tpRetr()

File I/O operation
for Copy service

EcDsStCache
ManagerServe
r,
EcDsStStagin
gDiskServer,
DsStArchiveS
erver

not passed

not passed

not passed

EcDsStCach
eManagerSer
ver,
EcDsStStagi
ngDiskServe
r,
DsStArchive
Server

One per
CacheMan
agerServic
eThread,
One per
StagingDis
kServiceT
hread,
One per
ArchiveWr
iteThread

DSS -
DDIST

EcDsDistributi
onServer

DsDdMedia Contains media
drivers and request
level media
information, like
media type.

EcDsDistribut
ionServer

not passed EcDsDistribu
tionServer

Created
once per
DDIST
request.

EcDsDistributi
onServer

DsDdDistRequest
S

Contains request
level information,
like State and
orderID

EcDsDistribut
ionServer

not passed EcDsDistribu
tionServer

Created
once per
DDIST
request.

EcDsDistributi
onServer

DsDdDistListS Contains pointers to
granule and file
information for the
request

EcDsDistribut
ionServer

not passed EcDsDistribu
tionServer

Created
once per
DDIST
request.

 3-40 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (15 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

EcDsDistributi
onServer

DsDdMediaDist Contains packaging
information and has
a one-to-one
correspondence to
physical media for
the request. Note:
requests can be
sufficiently large to
span more than one
physical media.

EcDsDistribut
ionServer

not passed EcDsDistribu
tionServer

Created at
least once
per each
DsDdMedi
a

EcDsDistributi
onServer

DsDdGranuleS Contains
granuleUR
information.

EcDsDistribut
ionServer

not passed EcDsDistribu
tionServer

Created
for each
granule for
each
request.

EcDsDistributi
onServer

DsDdDistFileS Contains file
information, like
file name & file
size.

EcDsDistribut
ionServer

not passed EcDsDistribu
tionServer

Created
for each
file
(archive
data file,
metadata
file, etc.)
in each
granule

 3-41 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (16 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

Created in
most functions
and most
object
constructors

RWCString The rogue-wave
string class used
through all classes
and functions.

Created in
most
functions and
most object
constructors.

An
extensive
list of
functions.

An extensive
list of
functions.

Created in
most
functions
and most
object
constructor
s.

Created in
most
functions.

DsDdLog Utility for
simplifying
logging.

Created in
most
functions.

EcDsDistri
butionServ
er

EcDsDistribu
tionServer

Created in
most
functions.

EcDsDistributi
onServer

DsDdActiveQueu
e

A Queue of
requests that are in
Active, Staging,
and Transferring
states.

EcDsDistribut
ionServer

not passed EcDsDistribu
tionServer

Created
once
(singleton
class)

EcDsDistributi
onServer

DsDdBaseQueue Parent class of the
remaining queues

EcDsDistribut
ionServer

not passed EcDsDistribu
tionServer

Created
once
(singleton
class)

EcDsDistributi
onServer

DsDdConfiguratio
n

Utility class for
reading
configuration
information.

EcDsDistribut
ionServer

not passed EcDsDistribu
tionServer

Created
once
(singleton
class)

 3-42 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (17 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

EcDsDistributi
onServer

DsDdDoneQueue A Queue of
requests in the
Shipped, Failed or
Cancelled states.

EcDsDistribut
ionServer

not passed EcDsDistribu
tionServer

Created
once
(singleton
class)

EcDsDistributi
onServer

DsDdHoldQueue A Queue of
requests that are in
one of the
suspended states.

EcDsDistribut
ionServer

not passed EcDsDistribu
tionServer

Created
once
(singleton
class)

EcDsDistributi
onServer

DsDdPriorityQue
ue

A Priority Queue of
requests that are
pending. Uses
DsDdThreadPool
class in the process
of selecting the next
request for
processing.

EcDsDistribut
ionServer

not passed EcDsDistribu
tionServer

Created
once
(singleton
class)

EcDsDistributi
onServer

DsDdReadyToShi
pQueue

A Queue of hard
media requests
waiting on the
operator for
selection to enter
the Shipped state.

EcDsDistribut
ionServer

not passed EcDsDistribu
tionServer

Created
once
(singleton
class)

 3-43 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (18 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

EcDsDistributi
onServer

DsDdRequestList
S

List of all DDIST
requests

EcDsDistribut
ionServer

not passed EcDsDistribu
tionServer

Created
once
(singleton
class)

EcDsDistributi
onServer

DsDdScheduler Class, which wakes
up worker threads
and assigns them to
requests as selected
by the
DsDdPriorityQueue
.

EcDsDistribut
ionServer

not passed EcDsDistribu
tionServer

Created
once
(singleton
class)

EcDsDistributi
onServer

DsDdThreadPool Uses thread pools
DB tables and
procedures to select
next request for
processing, given
request information
and constraints.

EcDsDistribut
ionServer

not passed EcDsDistribu
tionServer

Created
once per
each
thread
pool name
(usually 5
- 50)

 3-44 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (19 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

DMS DMS GlParameterList::
DeepAssign()

Generic copy
method for ECS
composite class

DMS SDSRV
(CSCI),
PLANG
(CSCI),
Registry
(CSC)

Where
appropriate

Extensive DMS code
compensates for
native leak by
client side action

DmGwV0Ecs
RequestReciev
er

DmGwInventoryR
equest

Handler for V0
Inventory Searches

DmGwV0Ecs
RequestRecie
ver

not passed DmGwV0Ec
sRequestReci
ever

1 per
thread

No significant
leaks

DmGwV0Ecs
RequestReciev
er

DmGwBrowseRe
quest

Handler for V0
Browse Requests

DmGwV0Ecs
RequestRecie
ver

not passed DmGwV0Ec
sRequestReci
ever

1 per
thread

No significant
leaks, but for
integrated browse
may hold large
amount of
memory while
active

DmGwV0Ecs
RequestReciev
er

DmGwProductRe
quest

Handler for V0
Product Requests

DmGwV0Ecs
RequestRecie
ver

not passed DmGwV0Ec
sRequestReci
ever

1 per
thread

No significant
leaks

EcDmV0ToEc
sGateway

DmGwSpecialize
dCriteria

Representation of
V0
SPECIALIZED_C
RITERIA element

EcDmV0ToE
csGateway

not passed Where
appropriate

Extensive Recursive class,
potential for large
memory usage.
No significant
leaks.

 3-45 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (20 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

DmGwV0Ecs
RequestReciev
er

DmGwDirectoryR
equest

Handler for V0
Directory Searches

DmGwV0Ecs
RequestRecie
ver

not passed DmGwV0Ec
sRequestReci
ever

1 per
thread

No significant
leaks

DmGwInvento
ryRequest

DmGwGranuleLe
velSearch

SDSRV search
client-side search
object

DmGwInvent
oryRequest

not passed DmGwInven
toryRequest

1 per data
set
searched

No significant
leaks

DmGwManag
edServer

DmGwRequestRe
ceiver

Listener / Dispatch
class for
EcDmV0ToEcsGat
eway

DmGwManag
edServer

not passed DmGwMana
gerdServer

1 per
session

No significant
leaks

DmGwDataset EcRgDistOptions Client class for
distribution options
provision

DmGwDatase
t

not passed DmGwDatas
et

1 per
search

No significant
leaks

DmGwDataset EcRgSubsetOptio
ns

Client class for
subset options
provision

DmGwDatase
t

not passed DmGwDatas
et

1 per
search

No significant
leaks

 3-46 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (21 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

DPS EcDpPrEM

EcDpPrDeleti
on

EcPlPREditor
_IF
EcPlOdMgr

DpPrDSSInterface Interface to SDSRV EcDpPrEM

EcDpPrDeleti
on

EcPlPREditor
_IF
EcPlOdMgr

not passed EcDpPrEM

EcDpPrDelet
ion

EcPlPREdito
r_IF
EcPlOdMgr

granules
x DPR
interim
files x
DPR
input
granules x
DPR
input
granules x
OD DPR

EcDpPrEM DpPrDataManage
r

Manages acquires
and inserts of
granules from/to
SDSRV

EcDpPrEM not passed EcDpPrEM # granules
x DPR

EcDpPrEM DpPrExecutionMa
nager

Supervisory
program for DPR
execution

EcDpPrEM not passed EcDpPrEM 2 x DPR

EcDpPrEM DpPrResourceMa
nager

Manages disk
allocation for files
and CPUs for DPRs

EcDpPrEM not passed EcDpPrEM (# files +
2) x DPR

 3-47 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (22 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

EcDpPrJobMg
mt

EcDpPrEM

DpPrScheduler Manages DPR
construction in
AutoSys and
scheduling on
computers

EcDpPrJobM
gmt

not passed EcDpPrJobM
gmt

1 x DPR
and
until
server is
brought
down

EcDpPrEM DpPrPcf Constructs process
control file

EcDpPrEM not passed EcDpPrEM 1x DPR

EcDpPrJobMg
mt

DpPrCotsManager Interface to
AutoSys

EcDpPrJobM
gmt

not passed EcDpPrJobM
gmt

2 x DPR

EcDpPrJobMg
mt

DpPrJIL Interface to
AutoSys

EcDpPrJobM
gmt

not passed EcDpPrJobM
gmt

1 x DPR

EcDpPrEM DpPrPge Manages acquire of
PGE

EcDpPrEM not passed EcDpPrEM 1 x DPR

EcDpPrEM DpPrFile Helper class for
DprPrDataManage
ment

EcDpPrEM not passed EcDpPrEM # files x
DPR

EcDpPrDeleti
on

DpDeletionServer Removes PDPS
files that are no
longer used

EcDpPrDeleti
on

not passed EcDpPrDelet
ion

until
server is
brought
down

EcDpPrDeleti
onClient

DpDeletionProxy Responsible for
identifying files to
be deleted

EcDpPrDeleti
onClient

not passed EcDpPrDelet
ionClient

2 x day

 3-48 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (23 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

EcPlPREditor PlDpr Data Processing
Request class

EcPlPREditor not passed EcPlPREdito
r

1 per DPR Created as a
member of a
static pool which
is deleted when
PREditor is
brought down

EcPlPREditor PlUserParameters PGE Processing
Parameters class

EcPlPREditor not passed EcPlPREdito
r

Multiple
per PGE

EcPlPREditor,
EcPlOdMgr,
EcPlSubMgr

PlDprData Record that relates
each input/output
granule with a Data
Processing Request

EcPlPREditor
, EcPlOdMgr,
EcPlSubMgr

not passed

not passed
not passed

EcPlPREdito
r,

EcPlOdMgr,
EcPlSubMgr

1 per
unavailabl
e
primary/alt
ernate
input

EcPlPREditor,
EcPlOdMgr

PlDataGranule Record for each
input/output
granule

EcPlPREditor
, EcPlOdMgr

not passed

not passed

EcPlPREdito
r,
EcPlOdMgr

1 per
input/outp
ut granule

PLS

EcPlPREditor,
EcPlOdMgr

PlPge Record of PDPS
PGE information

EcPlPREditor
, EcPlOdMgr

not passed

not passed

EcPlPREdito
r,
EcPlOdMgr

1 per Page Created as a
member of a
static pool which
is deleted when
PREditor or
OdMgr are
brought down

 3-49 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (24 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

EcPlOdMgr PlHighLevelOrder Record of ASTER
OnDemand
HighLevel Order

EcPlOdMgr not passed EcPlOdMgr 1 per
HighLevel
order

Deleted after
each ASTER
OnDemand order
is processed

EcPlPREditor,
EcPlOdMgr

PlDataScheduled Record of Data
Scheduled type
PGE

EcPlPREditor
, EcPlOdMgr

not passed

not passed

EcPlPREdito
r,
EcPlOdMgr

1 per Data
Scheduled
PGE

Deleted after
PGE information
is collected

EcPlPREditor,
EcPlOdMgr

PlDataTypeReq Record of ESDT of
Data Processing
Request input

EcPlPREditor
, EcPlOdMgr

not passed

not passed

EcPlPREdito
r,

EcPlOdMgr

EcPlPREditor,
EcPlOdMgr

PlMetadataChecks Record of required
metadata checks for
PGE inputs

EcPlPREditor
, EcPlOdMgr

not passed

not passed

EcPlPREdito
r,
EcPlOdMgr

1 per PGE
input if
metadata
checks are
required

Deleted when the
collection is
destroyed

EcPlPREditor PlUserParameters Record of user
defined processing
parameter values

EcPlPREditor not passed EcPlPREdito
r

1 per Page,
if defined

Deleted when the
collection is
destroyed

EcPlPREditor,
EcPlOdMgr

PlTimeScheduled Class that
represents a Time
Scheduled type
PGE

EcPlPREditor
, EcPlOdMgr

not passed

not passed

EcPlPREdito
r,
EcPlOdMgr

1 per Time
Scheduled
PGE

Deleted after
PGE information
is collected

 3-50 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (25 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

EcPlOdMgr PlStandingOrderG
ranules

Collection of
ASTER OnDemand
input granules with
DAR Ids associated
with user requests

EcPlOdMgr not passed EcPlOdMgr 1 per
Standing
Order with
a matching
DAR ID

Deleted after all
relevant
OnDemand
orders are
processed

EcPlPREditor,
EcPlOdMgr

PlSnapshotSchedu
led

Class that
represents a
Snapshot Scheduled
type PGE

EcPlPREditor
, EcPlOdMgr

not passed

not passed

EcPlPREdito
r,
EcPlOdMgr

1 per
Snapshot
Scheduled
PGE

Deleted after
PGE information
is collected

EcPlPREditor PlRoutineArrival Class that
represents an input
data ESDT that is
ingested at regular,
predictable time
intervals

EcPlPREditor not passed EcPlPREdito
r

1 per
routinely
arriving
input
granule

Deleted after
Data Processing
Request
information is
collected

EcPlPREditor,
EcPlOdMgr

PlOutputYield Class that
represents Data
Processing Request
outputs ESDTs

EcPlPREditor
, EcPlOdMgr

not passed

not passed

EcPlPREdito
r,

EcPlOdMgr

 3-51 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (26 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

CSS EcSbSubServe
r
EcSbSubServe
r
EcSbGui
EcCsEmailPar
ser
EcCsMojoGat
eway
EcCsMtMGate
way
EcCsRegistry

GlParameterList A class that collects
the general
parameters of ECS.

EcSbSubServ
er
EcSbSubServ
er
EcSbGui
EcCsEmailPar
ser
EcCsMojoGat
eway
EcCsMtMGat
eway
EcCsRegistry

EcSbCl

not passed

not passed
not passed

not passed

not passed

not passed

EcSbSubSer
ver
EcSbSubSer
ver
EcSbGui
EcCsEmailP
arser
EcCsMojoGa
teway
EcCsMtMGa
teway
EcCsRegistr
y

9

66

19
9

29

31

26

 3-52 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (27 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

 EcSbSubServe
r
EcCsRegistry
LoadingTool

RWDBMemTable A Rogue Wave DB
class that is a table
of data residing in
the program
memory. After
construction, an
RWDBMemTable
is no longer
associated with a
table in the
database. An
application can
modify the data in
an
RWDBMemTable,
but the changes are
not propagated
back to the
database.

EcSbSubServ
er
EcCsRegistry
LoadingTool

not passed

not passed

not passed

EcSbSubSer
ver
EcCsRegistr
y
LoadingTool

3

8

2

 3-53 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (28 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

EcSeLoginPro
g
EcSbSubServe
r
LoadingTool
EcCsRegistry

RWDBResult A Rogue Wave DB
class that represents
a sequence of
results whenever a
database operation
can potentially
produce multiple
SQL table
expressions.
Triggers that can
cause results to be
generated as a
result of an
INSERT, DELETE,
or UPDATE
statement.

EcSeLoginPro
g
EcSbSubServ
er
LoadingTool
EcCsRegistry

not passed

not passed

not passed
not passed

EcSeLoginPr
og
EcSbSubSer
ver
LoadingTool
EcCsRegistr
y

2

6

15
3

EcSeLoginPro
g
EcSbSubServe
r
EcCsRegistry
LoadingTool
EcCsIdNameS
erver

RWDBReader A Rogue Wave DB
class that provides
row-by-row access
to tabular data.

EcSeLoginPro
g
EcSbSubServ
er
EcCsRegistry
LoadingTool
EcCsIdName
Server

not passed

not passed

not passed

not passed
not passed

EcSeLoginPr
og
EcSbSubSer
ver
EcCsRegistr
y
LoadingTool
EcCsIdName
Server

13

13

8

5
2

 3-54 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (29 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

EcSbGui EcClEventCollect
or

This class provides
a collection
mechanism for
retrieving and
manipulating
multiple events.

EcSbGui not passed EcSbGui 1

EcSbGui EcClSubscription
Collector

This class provides
a collection
mechanism for
retrieving and
manipulating
multiple
subscriptions

EcSbGui not passed EcSbGui 1

 3-55 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (30 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

 EcCsMtMGate
way
EcCsMojoGat
eway
EcCsEmailPar
ser
EcSbSubServe
r

DsClESDTRefere
nceCollector

This class provides
the primary
interaction
mechanism for
client software.
This class contains
the specialized
functions pertaining
to management of
state (the working
collection on the
server side) by
mimicking that
state on the client
machine.

EcCsMtMGat
eway

EcCsMojoGat
eway

EcCsEmailPar
ser

EcSbSubServ
er

not passed

not passed

not passed

not passed

EcCsMtMGa
teway

EcCsMojoGa
teway

EcCsEmailP
arser

EcSbSubSer
ver

1

1

1

1

 3-56 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (31 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

MSS EcMsAcOrder
Srvr
EcMsAcRegU
serSrvr
MsCsSurveyM
grServer

RWDBMemTable A Rogue Wave DB
class that is a table
of data residing in
the program
memory. After
construction, an
RWDBMemTable
is no longer
associated with a
table in the
database. An
application can
modify the data in
an
RWDBMemTable,
but the changes are
not propagated
back to the
database.

EcMsAcOrder
Srvr

EcMsAcRegU
serSrvr

MsCsSurvey
MgrServer

not passed

not passed

not passed

EcMsAcOrd
erSrvr

EcMsAcReg
UserSrvr

MsCsSurvey
MgrServer

2

1

6

 3-57 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (32 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

EcMsAcOrder
Srvr
EcMsAcRegU
serSrvr
MsCsSurveyM
grServer

RWDBResult A Rogue Wave DB
class that represents
a sequence of
results whenever a
database operation
may
potentially produce
multiple SQL table
expressions.
Triggers that can
cause results to be
generated as a
result of an
INSERT, DELETE,
or UPDATE
statement.

EcMsAcOrder
Srvr

EcMsAcRegU
serSrvr

MsCsSurvey
MgrServer

not passed

not passed

not passed

EcMsAcOrd
erSrvr

EcMsAcReg
UserSrvr

MsCsSurvey
MgrServer

13

10

6

EcMsAcOrder
Srvr
EcMsAcRegU
serSrvr
MsCsSurveyM
grServer

RWDBReader A Rogue Wave DB
class that provides
row-by-row access
to tabular data.

EcMsAcOrder
Srvr

EcMsAcRegU
serSrvr

MsCsSurvey
MgrServer

not passed

not passed

not passed

EcMsAcOrd
erSrvr

EcMsAcReg
UserSrvr

MsCsSurvey
MgrServer

16

13

29

 3-58 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (33 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

INS EcInGUI,
EcInInitPassw
d

CsSeCryptoDes::
DesEncrypt

Used to encrypt
passwords.

EcInGUI,
EcInInitPassw
d

not passed EcInGUI Three
instances
per update
to the
InExternal
DataProvi
derInfo
table
(EcInGUI)
. One
instance
for
EcInInitPa
sswd.

EcInInitPasswd
does not delete
the instance, but
it is a test driver.
The amount of
memory allocated
is the size of the
encrypted
password.

 EcInGUI,
EcInPolling,
EcInReqMgr

CsSeCryptoDes::
DesDecrypt

Used to decrypt
passwords.

EcInGUI,
EcInPolling,
EcInReqMgr

not passed
not passed
not passed

EcInGUI,
EcInPolling,
EcInReqMgr

Three
instances
per
retrieval
from the
InExternal
DataProvi
derInfo
table.

The amount of
memory allocated
is the size of the
encrypted
password.

 3-59 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (34 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

EcInGUI,
EcInGran,
EcInPolling,
EcInReqMgr

InDataTypeTempl
ate

Used to access the
InDataTypeTempla
te table in the
Ingest database.
This table contains
information about
each data type that
can be ingested.

EcInGUI,
EcInGran,
EcInPolling,
EcInReqMgr

not passed
not passed
not passed
not passed

EcInGUI,
EcInGran,
EcInPolling,
EcInReqMgr

One
instance

The memory is
deallocated when
the server comes
down.

EcInGUI,
EcInGran,
EcInPolling,
EcInReqMgr

InEDPAddressMa
p

Used to access the
InEDPAddressMap
table in the Ingest
database. This
table contains IP
addresses, which
can be mapped to
external data
provider names.

EcInGUI,
EcInGran,
EcInPolling,
EcInReqMgr

not passed
not passed
not passed
not passed

EcInGUI,
EcInGran,
EcInPolling,
EcInReqMgr

One
instance

The memory is
deallocated when
the server comes
down.

 3-60 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (35 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

EcInGUI,
EcInGran,
EcInPolling,
EcInReqMgr

InCurrentDataTyp
eMap

Used to access the
InCurrentDataType
Map table in the
Ingest database.
This table contains
the default version
id for each data
type that can be
ingested.

EcInGUI,
EcInGran,
EcInPolling,
EcInReqMgr

not passed
not passed
not passed
not passed

EcInGUI,
EcInGran,
EcInPolling,
EcInReqMgr

One
instance

The memory is
deallocated when
the server comes
down.

EcInGUI InValRequestState Used to access the
InValRequestState
table in the Ingest
database. This
table contains the
valid request states.

EcInGUI not passed EcInGUI One
instance

EcInGUI InValDataGranule
State

Used to access the
InValDataGranuleS
tate table in the
Ingest database.
This table contains
the valid granule
states.

EcInGUI not passed EcInGUI One
instance

 3-61 313-CD-610-003

Table 3.2.5-1. Memory Management Improvements (36 of 36)
Subsystem

Name
Executable
Name (M)

Key Classes Description (M) Where
Created?

(Executable/
process

name) (M)

Passed To
(Executable

/process
name)

Where
Deleted?
(Process
name) (M)

Number of
Instances

(Example –
1 per

granule)

Comments/
Remarks (Items

of special
interest. Example

- Size per
instantiation,

never “deleted”,
etc.)

EcInGUI,
EcInGran,
EcInPolling,
EcInReqMgr

InConfig Used to store
configuration
parameters for
Ingest.

EcInGUI,
EcInGran,
EcInPolling,
EcInReqMgr

not passed
not passed
not passed
not passed

EcInGUI,
EcInGran,
EcInPolling,
EcInReqMgr

One
instance

The memory is
deallocated when
the server comes
down.

EcInReqMgr InGranuleServers
Queue

Used to access the
Ingest granule
queue.
EcInReqMgr uses
the granule queue
for dispatching
granules to each
EcInGran instance.

EcInReqMgr not passed EcInReqMgr One
instance

The memory is
deallocated when
the server comes
down.

CLS Not
Applicable

Toolkit Not
Applicable

 3-62 313-CD-610-003

3.3 ESDT Handling Scenario

3.3.1 Scenario Description

This scenario shows how Earth Science Data Types (ESDTs) are handled in the ECS system.
This scenario is divided into a thread for the installation process, a thread for the update process,
and threads for the Import and Export of ESDTs. A detailed description of these threads is
provided below.

3.3.2 Scenario Preconditions
The preconditions for each thread are shown in the thread sections for this scenario.

3.3.3 Scenario Partitions
The ESDT Handling Scenario has been partitioned into the following threads:

• Install ESDT (Thread A) -- This thread shows how the ESDTs are installed in the ECS
system (see Section 3.3.4).

• Update ESDT (Thread B) -- This thread shows how the ESDTs are updated in the ECS
system (see Section 3.3.5).

• Install Reference Descriptor (Thread C) – (Deleted).

• Update Reference Descriptor (Thread D) – (Deleted).

• Import ESDTs (Thread E) – This thread shows how ESDTs are imported into the ECS
system from other protocols, namely ASTER GDS (see section 3.3.8).

• Export ESDTs (Thread F) – This thread shows how ESDTs are exported from the ECS
system to other protocols, namely V0-IMS and ASTER GDS (see section 3.3.9).

3.3.4 Install ESDT Thread

This thread shows how Earth Science Data Types (ESDTs) are installed in the ECS system. The
purpose is to have ESDT data available in various applications for utilization with advertising,
archiving, and subscribing to designated events. The installation of the ESDT requires a
descriptor file, and a Dynamic Link Library file (DLL). The ESDT descriptor file contains
Collection level and Inventory level metadata and data services information. The Dynamic Link
Library file contains the services that are available for the ESDT.

 3-63 313-CD-610-003

To accomplish the install, the DAAC operator first identifies the ESDT. The DSS Science Data
Server (SDSRV) sends applicable parts of the ESDT to the Data Dictionary (DDICT) Server and
the Subscription Server (SBSRV). The Science Data Server also stores the ESDT information
in its own database.

The ESDTs include data for specific instruments on each mission, external ancillary data, and
System data, which includes FDD (orbit and attitude) data.

Install ESDT Thread Preconditions

• The ESDT is approved for installation.

• The DAAC Operator knows where the descriptor and the Dynamic Link Library (DLL)
for the ESDT are located.

• Any file space needed for the ESDT or handling the ESDT is not provided for explicitly
in this scenario. File space is handled as needed by the data servers working with the
ESDTs.

Install ESDT Interaction Diagram - Domain View

Figure 3.3.4.1-1 depicts the Install ESDT Interaction - Domain View

Figure 3.3.4.1-1. Install ESDT Interaction Diagram

 DSS
(SDSRV)

A.1 Activate GUI SDSRV
 GUI

A.1 Request ESDT
 Install

 DMS
(DDICT)

 CSS
(SBSRV)

A.2 Store ESDT info

A.3 Send Inventory
 & Collection

 Level Metadata

DAAC
 Ops

A.4 Register
 ESDT Events

A.5 Event IDs

SDSRV
 DB

 (DSS)

 CCS Middleware
HMI (GUI, Xterm, command)

 ftp
 email (or other as noted)
 Double line - Synchronous
 email (or other as noted)
 Dashed - Asynchronous

 Socket

 Sybase CtLib

 3-64 313-CD-610-003

3.3.4.2 Install ESDT Interaction Table - Domain View
Table 3.3.4.2-1 provides the Interaction - Domain View: ESDT Installation.

Table 3.3.4.2-1. Interaction Table - Domain View: ESDT Installation
Step Event Interface

Client
Interface
Provider

Data
Issues

Step Preconditions Description

A.1 Activate
GUI
/Request
ESDT
Install

DAAC
Operator

DSS
(SDSRV
GUI)

None DAAC Operator gets
the descriptor file
location and DLL
from the directories
specified in the
configuration file for
the ESDT.

The DAAC Operator
brings up the Science
Data Server (SDSRV)
GUI to install the ESDT.
The DAAC Operator, via
the Science Data Server
GUI, submits a request to
the Science Data Server.

A.2 Store
ESDT info

DSS
(SDSRV)

DSS
(SDSRV
DB)

None None Collection level metadata
and configuration
information are stored in
the Science Data
Server’s database. Also,
DLLs are associated with
the ESDT.

A.3 Send
Inventory
and
Collection
Level
Metadata

DSS
(SDSRV)

DMS
(DDICT)

None None Science Data Server
sends collection level and
inventory level metadata
to the Data Dictionary
(DDICT) Server.

A.4 Register
ESDT
events

DSS
(SDSRV)

CSS
(SBSRV)

None None Science Data Server
registers the ESDT
events with the
Subscription Server
(SBSRV).

A.5 Event IDs CSS
(SBSRV)

DSS
(SDSRV)

None None The Subscription Server
sends an event
identification to the
Science Data Server.

3.3.4.3 Install ESDT Component Interaction Table
Table 3.3.4.3-1 provides the Component Interaction: ESDT Installation.

Table 3.3.4.3-1. Component Interaction Table: ESDT Installation (1 of 3)
Step Event Interface

Client
Interface
Provider

Interface
Mech.

Description

A.1.1 Startup Science
Data Server GUI

DAAC
Operator

EcDsSdSrvGui Xterm The DAAC Operator
invokes the Science
Data Server GUI.

A.1.2 Select Add Data
Types

DAAC
Operator

EcDsSdSrvGui Xterm The DAAC Operator
selects the Data Types
tab and clicks the Add
button.

 3-65 313-CD-610-003

Table 3.3.4.3-1. Component Interaction Table: ESDT Installation (2 of 3)
Step Event Interface

Client
Interface
Provider

Interface
Mech.

Description

A.1.3 Input ESDT
Information

DAAC
Operator

EcDsSdSrvGui Xterm The DAAC Operator
fills in Descriptor
Filename.

A.1.4 Submit Add
ESDT

EcDsSdSr
vGui

EcDsScienceD
ataServer

CCS
Middleware

The DAAC Operator
hits the OK button to
submit the request to
the Science Data
Server. The correct
Science Data Server is
determined via a Server
UR, declared in the GUI
configuration file.

A.2.1 Descriptor
Validation

EcDsScie
nceDataS
erver

EcDsScienceD
ataServer

Internal The Science Data
Server validates the
descriptor.

A.2.2 Descriptor and
DLL Installation

EcDsScie
nceDataS
erver

EcDsScienceD
ataServer

Internal The Science Data
Server installs the
descriptor and Dynamic
Link Library (DLL) in
the directories specified
in its configuration file.

A.2.3 Store ESDT
configuration
information

EcDsScie
nceDataS
erver

Sybase
ASE/SQS

CtLib The Configuration
information about the
Earth Science Data
Type (ESDT) is stored
in the Science Data
Server’s database.

A.2.4 Store ESDT
Collection Level
Metadata

EcDsScie
nceDataS
erver

Sybase
ASE/SQS

CtLib The Collection Level
Metadata is stored in
the Science Data
Server’s database.

A.3.1 The Data
Dictionary Server
receives
Collection and
Inventory
Metadata

EcDsScie
nceDataS
erver

EcDmDictServ
er

CCS
Middleware

The Science Data
Server sends Collection
and Inventory Metadata
to the Data Dictionary
Server.

A.3.2 Store Collection
and Inventory
Metadata

EcDmDict
Server

Sybase ASE CtLib The Data Dictionary
server stores the
collection and inventory
metadata in its
database.

A.4.1 Register Events
with Subscription
Server

EcDsScie
nceDataS
erver

EcSbSubServe
r

CCS
Middleware

The Science Data
Server registers the
ESDT’s events with the
Subscription Server as
ESDT qualifiers.

 3-66 313-CD-610-003

Table 3.3.4.3-1. Component Interaction Table: ESDT Installation (3 of 3)
Step Event Interface

Client
Interface
Provider

Interface
Mech.

Description

A.4.2 Store events in
Subscription
Server

EcSbSub
Server

Sybase ASE CtLib The Subscription
Server stores the
ESDT’s events in its
database.

A.5.1 Send event IDs to
Science Data
Server

EcSbSub
Server

EcDsScience
DataServer

CCS
Middleware

The Subscription
Server sends the Event
IDs to the Science Data
Server.

A.5.2 Store event IDs in
Science Data
Server

EcDsScie
nceDataS
erver

Sybase ASE CtLib The Science Data
Server stores the Event
IDs in its database.

3.3.5 Update ESDT Thread

This thread shows how Earth Science Data Types (ESDTs) are updated in the ECS. The purpose
is to have updated ESDT data available in various applications for utilization with advertising,
archiving, and subscribing to designated events updated. The update of the ESDT requires an
updated descriptor file, an updated Dynamic Link Library file (DLL), if needed, and updated
valids, if needed. The updated ESDT descriptor file could contain updated Collection level
metadata, Inventory level metadata, updated data services information, or updated data event
information. The updated Dynamic Link Library file contains the new services available for the
ESDT. The updated valids contain new rules for the attributes.

To accomplish this, the DAAC operator loads updated valids and identifies the updated ESDT.
The DSS Science Data Server (SDSRV) sends applicable parts of the updated ESDT to the Data
Dictionary (DDICT) Server and the Subscription Server (SBSRV). The Science Data Server
also stores the updated ESDT information in its own database and copies the updated ESDT
descriptor files and DLL to the target directory.

The ESDTs include data for specific instruments on each mission, external ancillary data, and
System data, which includes FDD (orbit and attitude) data.

Update ESDT Thread Preconditions

• The updated ESDT is approved for installation.

• The updated valids are pre-loaded.

• The DAAC Operator knows where the updated descriptor and the updated Dynamic Link
Library (DLL) for the ESDT are located.

• Any file space needed for the ESDT or handling the ESDT is not provided explicitly in
this scenario. File space is handled as needed by the data servers working with the
ESDTs.

• The Science Data Server is placed in the maintenance mode.

 3-67 313-CD-610-003

3.3.5.1 Update ESDT Interaction Diagram - Domain View
Figure 3.3.5.1-1 depicts the Update ESDT Interaction - Domain View

 DSS
B.1.1 Activate GUI SDSRV

 GUI

B.1.2 Update Request

 DMS CSS

DAAC
 Ops

B.5 Event Ids or status

B.3 Replace
Inventory and
Collection Level
Metadata

B.4 Register new ESDT
Events or replace the
updated Event

B.6 Store Updated
ESDT information

SBSRV
 DB

DDICT
 DB

SDSRV
 DB

B.2 Validate Descriptor
& Identify Changes

 CCS Middleware
 HMI (GUI, Xterm, command)
 ftp
 email (or other as noted)
 Double line - Synchronous
 email (or other as noted)
 Dashed - Asynchronous
 Socket

 Sybase CtLib

Figure 3.3.5.1-1. Update ESDT Interaction Diagram

3.3.5.2 Update ESDT Interaction Table - Domain View
Table 3.3.5.2-1 provides the Interaction - Domain View: ESDT Update.

Table 3.3.5.2-1. Interaction Table - Domain View: ESDT Update (1 of 2)
Step Event Interface

Client
Interface
Provider

Data
Issues

Step Preconditions Description

B.1 Activate
GUI /
Update
Request

DAAC
Operator

DSS
(SDSRV)

None DAAC Operator gets
the descriptor file
location and DLL
from the directories
specified in the
configuration file for
the ESDT.

The DAAC Operator
brings up the Science
Data Server GUI to
update the ESDT. The
DAAC Operator, via the
Science Data Server GUI,
submits a request to the
Science Data Server.

B.2 Validate
Descriptor
and Identify
Changes

DSS
(SDSRV)

DSS
(SDSRV
DB)

None None The Science Data Server
(SDSRV) validates the
descriptor and identifies
changes.

 3-68 313-CD-610-003

Table 3.3.5.2-1. Interaction Table - Domain View: ESDT Update (2 of 2)
Step Event Interface

Client
Interface
Provider

Data
Issues

Step Preconditions Description

B.3 Replace
Inventory
and
Collection
Level
Metadata

DSS
(SDSRV)
(DSS)

DMS
(DDICT)

None None The Science Data Server
(SDSRV) sends a
command to the Data
Dictionary (DDICT)
Server to replace
collection level and
inventory level metadata.

B.4 Register
new or
replace
updated
ESDT
events

DSS
(SDSRV)

CSS
(SBSRV)

None None The Science Data Server
registers the new events
or sends a command to
replace updated Earth
Science Data Type
(ESDT) events with the
Subscription Server
(SBSRV).

B.5 Event Ids
Or
Status

CSS
(SBSRV)

DSS
(SDSRV)

None None The Subscription Server
sends Event Identification
for new events to the
Science Data Server.

B.6 Store
Updated
ESDT info

DSS
(SDSRV)

DSS
(SDSRV
DB)

None None Updated Collection level
metadata and new
Product Specific
Attributes (PSAs) are
stored in the Science
Data Server’s database.
Also, Dynamic Link
Libraries (DLLs) and
descriptor files are copied
to the target directories.

 3-69 313-CD-610-003

3.3.5.3 Update ESDT Component Interaction Table
Table 3.3.5.3-1 provides the Component Interaction: ESDT Update.

Table 3.3.5.3-1. Component Interaction Table: ESDT Update (1 of 2)
Step Event Interface

Client
Interface
Provider

Interface
Mech.

Description

B.1.1.1 Startup Science
Data Server GUI

DAAC
Operator

EcDsSdSrvGui Xterm The DAAC Operator
invokes the Science
Data Server GUI.

B.1.1.2 Select Update
Data Types

DAAC
Operator

EcDsSdSrvGui Xterm The DAAC Operator
selects the Data Types
tab and clicks the
Update button.

B.1.1.3 Input ESDT
Information

DAAC
Operator

EcDsSdSrvGui Xterm The DAAC Operator fills
in the Descriptor
Filename.

B.1.2 Submit Update
ESDT

EcDsSdSr
vGui

EcDsScienceD
ataServer

CCS
Middleware

The DAAC Operator hits
the OK button to submit
the request to the
Science Data Server.
The correct Science
Data Server is
determined via a Server
UR, declared in the GUI
configuration file.

B.2.1 Descriptor
Validation and
Identify Changes

EcDsScie
nceDataS
erver

EcDsScienceD
ataServer

Internal The Science Data
Server validates the
descriptor and identifies
changes.

B.3.1 The Data
Dictionary Server
receives
Collection and
Inventory
Metadata
information

EcDsScie
nceDataS
erver

EcDmDictServ
er

CCS
Middleware

The Science Data
Server sends a
command to the Data
Dictionary Server to
replace updated
Collection and Inventory
Metadata information.

B.3.2 Updated
Collection and
Inventory
Metadata replaced
in the Data
Dictionary Server

EcDmDict
Server

Sybase ASE CtLib The Data Dictionary
server replaces the
collection and inventory
metadata in its
database.

 3-70 313-CD-610-003

Table 3.3.5.3-1. Component Interaction Table: ESDT Update (2 of 2)

Step Event Interface
Client

Interface
Provider

Interface
Mech.

Description

B.4.1 Register new
events or replace
updated vents
with Subscription
Server

EcDsScie
nceDataS
erver

EcSbSubServer CCS
Middleware

The Science Data
Server registers the
ESDT’s new events
including ESDT
qualifiers or replaces
updated events with the
Subscription Server.

B.4.2 Store events in
Subscription
Server

EcSbSub
Server

Sybase ASE CtLib The Subscription
Server stores the
ESDT’s events in its
database.

B.5.1 Send event IDs
to Science Data
Server

EcSbSub
Server

EcDsScienceDa
taServer

CCS
Middleware

The Subscription
Server sends the Event
IDs to the Science Data
Server.

B.5.2 Store event Ids in
Science Data
Server

EcDsScie
nceDataS
erver

Sybase ASE CtLib The Science Data
Server stores the Event
IDS in its database.

B.6.1 Descriptor and
DLL Installation

EcDsScie
nceDataS
erver

EcDsScienceDa
taServer

Internal The Science Data
Server installs the
descriptor and DLL in
the target directories
specified in its
configuration file.

B.6.2 Store ESDT
Collection Level
Metadata

EcDsScie
nceDataS
erver

Sybase
ASE/SQS

CtLib The Collection Level
Metadata is stored in
the Science Data
Server’s database.

3.3.6 (Deleted)

3.3.7 (Deleted)

 3-71 313-CD-610-003

3.3.8 Import ESDTs Thread
This Thread shows how Earth Science Data Types (ESDTs) are imported into the ECS system
from other protocols, namely ASTER GDS. The purpose is to have non-ECS ESDT metadata
available to ECS clients so they may have access to services relating to those ESDTs. The import
of an ESDT requires the existence of a valids file from an external protocol. The valids file
contains Collection level and Inventory level metadata and data services information, written in
ODL obeying a format specified by the external protocol.

To accomplish this, the DAAC operator supplies the Maintenance Tool with a valids file for
import. The Data Dictionary (DDICT) Server is then supplied with metadata pertaining to that
ESDT.

Import ESDT Preconditions

• The valids file has been acquired from the external protocol.

3.3.8.1 Import ESDT Interaction Diagram - Domain View

Figure 3.3.8.1-1 depicts the Import ESDT Interaction - Domain View

Mtool GUI

DDICT
DAAC
 Ops

E.6 Insert collection

Valids
 File

DDICT
 DB

E.7 Insert collection
E.8 Display import results ASTER

 GDS

Non EDC
DAAC

E.1.2 Import Valids

E.1.1 ftp ECS valids file

E.5 Parse valids file

E.4 Retrieve Import
 Valids File

(DMS)

(DMS)

(DDICT)

 E.2 Request Import Valids
 E.3 Select file for import

CCS Middleware
HMI (GUI, Xterm, command)
ftp
email (or other as noted)
Double line - Synchronous
email (or other as noted)
 Dashed - Asynchronous
Socket
 Sybase CtLib

Figure 3.3.8.1-1. Import ESDT Interaction Diagram

 3-72 313-CD-610-003

3.3.8.2 Import ESDT Interaction Table - Domain View
Table 3.3.8.2-1 provides the Interaction - Domain View: ESDT Import.

Table 3.3.8.2-1. Interaction Table - Domain View: ESDT Import
Step Event Interface

Client
Interface
Provider

Data
Issues

Step Preconditions Description

E.1 ftp ECS
valids file /
Import
Valids

Non EDC
DAAC /
ASTER
GDS

DMS
(DDICT
Valids
File)

None Remote Operator
has transferred a
valids file.

A Remote DAAC operator
transfers a valids file.

E.2 Request
Import
Valids

DAAC
Operator

DMS
(Mtool
GUI)

None DAAC Operator
knows how to run
the Data Dictionary
Maintenance Tool.

The DAAC Operator
brings up the Data
Dictionary (DDICT)
Maintenance Tool (Mtool)
and selects the import
valids tab.

E.3 Select file
for import

DAAC
operator

DMS
(Mtool
GUI)

None DAAC Operator has
a valids file to
import.

The DAAC operator
selects appropriate
filename for import.

E.4 Retrieve
Import
Valids file

DMS
(Mtool
GUI)

DMS
(DDICT
Valids
File)

None None Access and read selected
file.

E.5 Parse
valids file

DMS
(Mtool
GUI)

DMS
(Mtool
GUI)

None File is accessible. Read in and create
internal representation of
the valids file.

E.6 Insert
collection

DMS
(Mtool
GUI)

DMS
(DDICT)

None Valids file is correct. Send insert collection to
the Data Dictionary
Server.

E.7 Insert
collection

DMS
(DDICT)

DMS
(DDICT
DB)

None None Insert the valids into the
Data Dictionary Server
database.

E.8 Display
import
results

DMS
(Mtool
GUI)

DAAC
operator

None None Show DAAC Operator the
results of the import.

 3-73 313-CD-610-003

3.3.8.3 Import ESDT Component Interaction Table
Table 3.3.8.3-1 provides the Component Interaction: ESDT Import.

Table 3.3.8.3-1. Component Interaction Table: ESDT Import
Step Event Interface

Client
Interface
Provider

Interface
Mech.

Description

E.1.1 Receive a valids
file from a Non-
EDC DAAC

Non EDC
DAAC
Operator

Valids File Ftp A Non-EDC DAAC
operator transfers a
valids file to EDC via
Ftp.

E.1.2 Receive a valids
file from ASTER
GDS

ASTER
GDS

Valids File E-mail A valids file is
transferred to EDC from
ASTER GDS via e-mail.

E.2.1 Startup Data
Dictionary
Maintenance Tool
GUI

DAAC
Operator

EcDmDdMaint
enanceTool

Xterm The DAAC Operator
invokes the Data
Dictionary Maintenance
Tool GUI.

E.2.2 Select ‘Import
Valids File’ tab

DAAC
Operator

EcDmDdMaint
enanceTool

Xterm The DAAC Operator
selects the ‘Import
Valids File’ tab.

E.3.1 Supply import
filename

DAAC
Operator

EcDmDdMaint
enanceTool

Xterm The DAAC Operator
types in the filename.

E.4.1 Retrieve Import
Valids File

EcDmDd
Maintenan
ceTool

Valids File
(Sybase ASE)

Xterm Access and read
selected file.

E.5.1 Click on check
button

DAAC
operator

EcDmDdMaint
enanceTool

Xterm The DAAC Operator
clicks on Check button;
the tool then checks the
file contents for
syntactic and semantic
errors.

E.6.1 Send ESDT
metadata to the
Data Dictionary
Server

EcDmDd
Maintenan
ceTool

EcDmDictServ
er

CCS
Middleware

Schema update sent to
the Data Dictionary
server relating to
ESDT. This generates
a new collection entity
within the schema.

E.7.1 Send ESDT
services to
ADSRV

EcDmDict
Server

DDICT DB
(SQS Sybase
ASE)

CCS
Middleware

Update database.

E.8.1 View results EcDmDd
Maintenan
ceTool

 DAAC
Operator

Xterm Display the results of
the import to the DAAC
operator.

3.3.9 Export ESDT Thread
This scenario shows how Earth Science Data Types (ESDTs) are exported in the ECS system to
other protocols, namely V0-IMS and ASTER GDS. The purpose is to have ECS ESDT metadata
available to other protocols so that their clients may have access to ECS services relating to those
ESDTs. The export of an ESDT requires the successful install of that ESDT, the creation of a

 3-74 313-CD-610-003

valids file and the sending of that file to the external protocol. The valids file contains Collection
level and Inventory level metadata and data services information, written in ODL obeying a
format specified by the destination protocol.

To accomplish this, the DAAC operator identifies the ESDT(s) to be exported and instructs the
Maintenance Tool to generate a valids file for them based on the protocol determined by the
operator. The Data Dictionary (DDICT) Server is queried for metadata. The result of this query
is then placed within operator-supplied valids file in a format compliant with the specified
protocol. This file is then sent via ftp to the external protocol.

Export ESDT Thread Preconditions

• The ESDT has been installed by the Science Data Server

• The DAAC Operator knows which ESDTs to export

3.3.9.1 Export ESDT Interaction Diagram - Domain View
Figure 3.3.9.1-1 depicts the Export ESDT Interaction - Domain View

F.1 DAAC Op Search Request
F.7 Request Export Valids

Mtool GUI DDICT

DAAC
 Ops

F.2 Request List of Collections
F.8 Extract collection for export

F.12 Generate
Valids File

Valids
 File

DDICT
 DB

F.3 Retrieve collection information request
F.9 Extract collection request

F.4 Retrieve collection information
F.10 Retrieve collection data sets

F.5 Retrieved collection data set information
F.11 Retrieved collection data sets

F.6 Display collection information
F.13 Display export results

F.14 Create
New Attribute
Definitions
File

(DMS)

(DMS)

(DDICT)

 CCS Middleware
 HMI (GUI, Xterm, command)
 ftp
 email (or other as noted)
 Double line - Synchronous
 email (or other as noted)
 Dashed - Asynchronous

 Socket

 Sybase CtLib

Figure 3.3.9.1-1. Export ESDT Interaction Diagram

 3-75 313-CD-610-003

3.3.9.2 Export ESDT Interaction Table - Domain View
Table 3.3.9.2-1 provides the Interaction - Domain View: ESDT Export.

Table 3.3.9.2-1. Interaction Table - Domain View: ESDT Export (1 of 2)
Step Event Interface

Client
Interface
Provider

Data
Issues

Step Preconditions Description

F.1 DAAC Op
Search
request

DAAC
Operator

DMS
(Mtool
GUI)

None DAAC Operator
knows how to run
the Data Dictionary
Maintenance Tool.

The DAAC Operator
brings up the Data
Dictionary Maintenance
Tool and selects the
export valids tab. The
DAAC Operator requests
the list of available
collections.

F.2 Request
list of
collections

DMS
(Mtool
GUI)

DMS
(DDICT)

None Data Dictionary
Maintenance Tool is
up.

The Maintenance tool
sends a query to the Data
Dictionary Server for
metadata pertaining to
each ESDT.

F.3 Retrieve
collection
information
request

DMS
(DDICT)

DMS
(DDICT
DB)

None None Request list of
collections.

F.4 Retrieve
collection
information

DMS
(DDICT
DB)

DMS
(DDICT)

None None Retrieve collection
information.

F.5 Retrieved
data set
collection
information

DMS
(DDICT)

DMS
(Mtool
GUI)

None None Retrieve data set
collection information.

F.6 Display
collection
information

DMS
(Mtool
GUI)

DAAC
Operator

None None Display collection
information.

F.7 Request
Export
Valids

DAAC
Operator

DMS
(Mtool
GUI)

None None Select collection(s) for
export.

F.8 Extract
collection
for export

DMS
(Mtool
GUI)

DMS
(DDICT)

None None Request collection(s) for
export.

F.9 Extract
collection
request

DMS
(DDICT)

DMS
(DDICT
DB)

None None Retrieve collection(s).

F.10 Retrieve
collection
data sets

DMS
(DDICT
DB)

DMS
(DDICT)

None None Retrieve collection(s).

 3-76 313-CD-610-003

Table 3.3.9.2-1. Interaction Table - Domain View: ESDT Export (2 of 2)
Step Event Interface

Client
Interface
Provider

Data
Issues

Step Preconditions Description

F.11 Retrieved
collection
data sets

DMS
(DDICT)

DMS
(Mtool
GUI)

None None Retrieve collection(s).

F.12 Generate
Valids File

DMS
(Mtool
GUI)

DMS
(Valids
File)

None None Construct valids structure
for export.

F.13 Display
Export
results

DMS
(Mtool
GUI)

DAAC
Operator

None None The DAAC Operator can
view the export results.

F.14 Create new
attribute
definitions
file

DAAC
Operator

DMS
(Valids
File)

None None The DAAC Operator
selects the filename for
the results.

3.3.9.3 Export ESDT Component Interaction Table
Table 3.3.9.3-1 provides the Component Interaction: ESDT Export.

Table 3.3.9.3-1. Component Interaction Table: ESDT Export (1 of 3)
Step Event Interface

Client
Interface
Provider

Interface
Mech.

Description

F.1.1 Startup Data
Dictionary
Maintenance Tool
GUI

DAAC
Operator

EcDmDdMaint
enanceTool

Xterm The DAAC Operator
invokes the Data
Dictionary
Maintenance Tool
GUI.

F.1.2 Select ‘Export
Valids File’ tab

DAAC
Operator

EcDmDdMaint
enanceTool

Xterm The DAAC Operator
selects the ‘Export
Valids File’ tab.

F.1.3 Select export
protocol

DAAC
Operator

EcDmDdMaint
enanceTool

Xterm The DAAC Operator
uses pick list to
determine the export
protocol.

F.1.4 Click on ESDT
‘selection criteria’
button

DAAC
Operator

EcDmDdMaint
enanceTool

Xterm The DAAC Operator
clicks on button.

F.1.5 Select ESDT
search
constraints

DAAC
operator

EcDmDdMaint
enanceTool

Xterm The DAAC Operator
selects search
constraints.

F.2.1 ESDT metadata
requested from
the Data
Dictionary Server

EcDmDd
Maintenan
ceTool

EcDmDictServ
er

CCS
Middleware

The Maintenance tool
sends a query to the
Data Dictionary server
for metadata
pertaining to each
ESDT.

 3-77 313-CD-610-003

Table 3.3.9.3-1. Component Interaction Table: ESDT Export (2 of 3)
Step Event Interface

Client
Interface
Provider

Interface
Mech.

Description

F.3.1 The Data
Dictionary Server
queries database

EcDmDict
Server

DDICT DB CCS
Middleware

The Data Dictionary
Server queries the
database for
metadata.

F.4.1 The Data
Dictionary Server
receives
metadata

DDICT DB EcDmDictServ
er

CCS
Middleware

The Data Dictionary
Server retrieves the
results of the query.

F.5.1 Return ESDT
metadata

EcDmDict
Server

EcDmDdMaint
enanceTool

CCS
Middleware

The Data Dictionary
Server sends the
results of the query to
the Maintenance tool.

F.6.1 Display the list of
collections

EcDmDd
Maintenan
ceTool

DAAC
Operator

Xterm The DAAC Operator
can view the results of
the query.

F.7.1 Select ESDTs to
export

DAAC
Operator

EcDmDdMaint
enanceTool

Xterm The DAAC Operator
selects the ESDTs
he/she wishes to
export.

F.8.1 ESDT metadata
requested from
the Data
Dictionary Server

EcDmDd
Maintenan
ceTool

EcDmDictServ
er

CCS
Middleware

The Maintenance tool
sends a query to the
Data Dictionary Server
for metadata
pertaining to each
ESDT.

F.9.1 The Data
Dictionary Server
queries database

EcDmDict
Server

DDICT DB CCS
Middleware

The Data Dictionary
Server queries the
database for
metadata.

F.10.1 The Data
Dictionary Server
receives
metadata

DDICT DB EcDmDictServ
er

CCS
Middleware

The Data Dictionary
Server retrieves the
results of the query.

F.11.1 Return ESDT
metadata

EcDmDict
Server

EcDmDdMaint
enanceTool

CCS
Middleware

The Data Dictionary
Server sends the
results of the query to
the Maintenance tool.

F.12.1 Select file for
export target

EcDmDd
Maintenan
ceTool

EcDmDdMaint
enanceTool
Valids File
(SQS Sybase
ASE)

CCS
Middleware

The DAAC Operator
provides the Data
Dictionary
Maintenance tool with
the filename of the
export file.

 3-78 313-CD-610-003

Table 3.3.9.3-1. Component Interaction Table: ESDT Export (3 of 3)
Step Event Interface

Client
Interface
Provider

Interface
Mech.

Description

F.12.2 Form File DAAC
Operator

EcDmDdMaint
enanceTool

Xterm The maintenance tool
forms a file containing
the ESDT metadata
and servers in a
protocol determined
by the DAAC operator.

F.13.1 Display the
export results

EcDmDd
Maintenan
ceTool

EcDmDdMaint
enanceTool
DAAC
Operator

Xterm The DAAC Operator
can view the results of
the export request.

F.14.1 Save Export file DAAC
Operator

EcDmDdMaint
enanceTool

Xterm The DAAC Operator
clicks a button to save
the export file.

3.4 System Start-up/Shutdown
The procedures for start up and shutdown are described in the Mission Operations Procedures
document, 611-CD-610, Section 3.2, System Startup and Shutdown. In the ECS Project Training
Material document, 625-CD-604, Volume 4: System Administration in the section titled System
Startup and Shutdown, the process for starting and shutting down the system is also described.

